Lead Authors:
Lisamarie Windham-Myers, U.S. Geological Survey
Wei-Jun Cai, University of Delaware
Contributing Authors:
Simone R. Alin, NOAA Pacific Marine Environmental Laboratory
Andreas Andersson, Scripps Institution of Oceanography
Joseph Crosswell, Commonwealth Scientific and Industrial Research Organization
Kenneth H. Dunton, University of Texas, Austin
Jose Martin Hernandez-Ayon, Autonomous University of Baja California
Maria Herrmann, The Pennsylvania State University
Audra L. Hinson, Texas A&M University
Charles S. Hopkinson, University of Georgia
Jennifer Howard, Conservation International
Xinping Hu, Texas A&M University, Corpus Christi
Sara H. Knox, U.S. Geological Survey
Kevin Kroeger, U.S. Geological Survey
David Lagomasino, University of Maryland
Patrick Megonigal, Smithsonian Environmental Research Center
Raymond G. Najjar, The Pennsylvania State University
May-Linn Paulsen, Scripps Institution of Oceanography
Dorothy Peteet, NASA Goddard Institute for Space Studies
Emily Pidgeon, Conservation International
Karina V. R. Schäfer, Rutgers University
Maria Tzortziou, City University of New York
Zhaohui Aleck Wang, Woods Hole Oceanographic Institution
Elizabeth B. Watson, Drexel University
Expert Reviewer:
Camille Stagg, U.S. Geological Survey
Science Lead:
Raymond G. Najjar, The Pennsylvania State University
Review Editor:
Marjorie Friederichs, Virginia Institute of Marine Science
Federal Liaisons:
Zhiliang Zhu, U.S. Geological Survey
Authors wish to thank their respective funding agencies, including the U.S. Geological Survey LandCarbon Program, NASA Carbon Monitoring System Program (NNH14AY671 for Windham-Myers), and the National Science Foundation Division of Ocean Sciences (OCE 1238212, 1637630, and 1237140 for Hopkinson).

Tidal Wetlands and Estuaries

REFERENCES

Adame, M. F., J. B. Kauffman, I. Medina, J. N. Gamboa, O. Torres, J. P. Caamal, M. Reza, and J. A. Herrera-Silveira, 2013: Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican caribbean. PLOS One, 8(2), e56569, doi: 10.1371/journal.pone.0056569.

Alin, S., R. Brainard, N. Price, J. Newton, A. Cohen, W. Peterson, E. DeCarlo, E. Shadwick, S. Noakes, and N. Bednaršek, 2015: Characterizing the natural system: Toward sustained, integrated coastal ocean acidification observing networks to facilitate resource management and decision support. Oceanography, 25(2), 92-107, doi: 10.5670/oceanog.2015.34.

AMAP, 2011: Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Climate change and the cryosphere, Arctic Monitoring and Assessment Programme, 538 pp.

Artigas, F., J. Y. Shin, C. Hobble, A. Marti-Donati, K. V. R. Schäfer, and I. Pechmann, 2015: Long term carbon storage potential and CO2 sink strength of a restored salt marsh in New Jersey. Agricultural and Forest Meteorology, 200, 313-321, doi: 10.1016/j.agrformet.2014.09.012.

Ávila-López, M. C., J. M. Hernández-Ayón, V. F. Camacho-Ibar, A. F. Bermúdez, A. Mejía-Trejo, I. Pacheco-Ruiz, and J. M. Sandoval­Gil, 2017: Air–water CO2 fluxes and net ecosystem production changes in a Baja California coastal lagoon during the anomalous North Pacific warm condition. Estuaries and Coasts, 40(3), 792-806, doi: 10.1007/s12237-016-0178-x.

Azevedo, I. C., A. A. Bordalo, and P. Duarte, 2014: Influence of freshwater inflow variability on the Douro Estuary primary productivity: A modelling study. Ecological Modelling, 272, 1-15, doi: 10.1016/j.ecolmodel.2013.09.010.

Barr, J. G., V. Engel, J. D. Fuentes, J. C. Zieman, T. L. O’Halloran, T. J. Smith, and G. H. Anderson, 2010: Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. Journal of Geophysical Research: Biogeosciences, 115(G2), doi: 10.1029/2009JG001186.

Barr, J. G., V. Engel, T. J. Smith, and J. D. Fuentes, 2012: Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agricultural and Forest Meteorology, 153, 54-66, doi: 10.1016/j.agrformet.2011.07.022.

Bartlett, K. B., D. S. Bartlett, R. C. Harriss, and D. I. Sebacher, 1987: Methane emissions along a salt marsh salinity gradient. Biogeochemistry, 4(3), 183-202, doi: 10.1007/bf02187365.

Bartlett, K. B., R. C. Harriss, and D. I. Sebacher, 1985: Methane flux from coastal salt marshes. Journal of Geophysical Research: Atmospheres, 90(D3), 5710-5720, doi: 10.1029/JD090iD03p05710.

Bauer, J. E., W. J. Cai, P. A. Raymond, T. S. Bianchi, C. S. Hopkinson, and P. A. Regnier, 2013: The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61-70, doi: 10.1038/nature12857.

Baumann, H., R. B. Wallace, T. Tagliaferri, and C. J. Gobler, 2015: Large natural ph, CO2 and O2 fluctuations in a temperate tidal salt marsh on diel, seasonal, and interannual time scales. Estuaries and Coasts, 38(1), 220-231, doi: 10.1007/s12237-014-9800-y.

Bednarsek, N., R. A. Feely, N. Tolimieri, A. J. Hermann, S. A. Siedlecki, G. G. Waldbusser, P. McElhany, S. R. Alin, T. Klinger, B. Moore-Maley, and H. O. Portner, 2017: Exposure history determines pteropod vulnerability to ocean acidification along the U.S. west coast. Scientific Reports, 7(1), 4526, doi: 10.1038/s41598-017-03934-z.

Benway, H., S. Alin, E. Boyer, W.-J. Cai, P. Coble, J. Cross, M. Friedrichs, M. Goñi, P. Griffith, M. Herrmann, S. Lohrenz, J. Mathis, G. McKinley, R. Najjar, C. Pilskaln, S. Siedlecki, and R. L. Smith, 2016: A Science Plan for Carbon Cycle Research in North American Coastal Waters. Report of the Coastal Carbon Synthesis (CCARS) Community Workshop, August 19-21, 2014. Ocean Carbon and Biogeochemistry Program and North American Carbon Program, 84 pp. [URL]

Bergamaschi, B. A., R. A. Smith, M. J. Sauer, and J. S. Shih, 2012: Terrestrial fluxes of sediments and nutrients to Pacific coastal waters and their effects on coastal carbon storage rates. In: Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of the Western United States. [Z. Zhu and B. Reed (eds.)]. U.S. Department of the Interior. U.S. Geological Survey Professional Paper 1797, 143-158 pp. [URL]

Bergamaschi, B., and L. Windham-Myers, 2018: Published data. AmeriFlux US-Srr Suisun marsh - Rush Ranch. doi: 10.17190/AMF/1418685.

Bhatt, U. S., D. A. Walker, M. K. Raynolds, J. C. Comiso, H. E. Epstein, G. Jia, R. Gens, J. E. Pinzon, C. J. Tucker, C. E. Tweedie, and P. J. Webber, 2010: Circumpolar Arctic tundra vegetation change is linked to sea ice decline. Earth Interactions, 14(8), 1-20, doi: 10.1175/2010ei315.1.

Bianchi, T. S., 2006: Biogeochemistry of Estuaries. Oxford University Press, 720 pp.

Bianchi, T. S., and M. A. Allison, 2009: Large-river delta-front estuaries as natural “recorders” of global environmental change. Proceedings of the National Academy of Sciences USA, 106(20), 8085-8092, doi: 10.1073/pnas.0812878106.

Bianchi, T. S., M. A. Allison, J. Zhao, X. Li, R. S. Comeaux, R. A. Feagin, and R. W. Kulawardhana, 2013: Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands. Estuarine, Coastal and Shelf Science, 119, 7-16, doi: 10.1016/j.ecss.2012.12.007.

Borges, A. V., 2005: Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries, 28(1), 3-27, doi: 10.1007/bf02732750.

Borges, A. V., and G. Abril, 2011: Carbon dioxide and methane dynamics in estuaries. In: Treatise on Estuarine and Coastal Science. [E. Wolanski and D. McLusky (eds.)]. Academic Press, 119-161 pp.

Borges, A. V., and N. Gypens, 2010: Carbonate chemistry in the coastal zone responds more strongly to eutrophication than ocean acidification. Limnology and Oceanography, 55(1), 346-353, doi: 10.4319/lo.2010.55.1.0346.

Borges, A. V., B. Delille, and M. Frankignoulle, 2005: Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts. Geophysical Research Letters, 32(14), doi: 10.1029/2005gl023053.

Boyer, E. W., R. W. Howarth, J. N. Galloway, F. J. Dentener, P. A. Green, and C. J. Vörösmarty, 2006: Riverine nitrogen export from the continents to the coasts. Global Biogeochemical Cycles, 20(1), doi: 10.1029/2005gb002537.

Breithaupt, J. L., J. M. Smoak, T. J. Smith, and C. J. Sanders, 2014: Temporal variability of carbon and nutrient burial, sediment accretion, and mass accumulation over the past century in a carbonate platform mangrove forest of the Florida Everglades. Journal of Geophysical Research: Biogeosciences, 119(10), 2032-2048, doi: 10.1002/2014jg002715.

Bricker, S., B. Longstaff, W. Dennison, A. Jones, K. Boicourt, C. Wicks, and J. Woerner, 2007: Effects of Nutrient Enrichment in the Nation’s Estuaries: A Decade of Change. National Estuarine Eutrophication Assessment Update. NOAA’s National Centers for Coastal Ocean Science, 328 pp. [URL]

Bridgham, S. D., J. P. Megonigal, J. K. Keller, N. B. Bliss, and C.
Trettin, 2006: The carbon balance of North American wetlands. Wetlands, 26(4), 889-916, doi: 10.1672/0277-5212(2006)26[889:tcbona]2.0.co;2.

Brown, S. C., 2006: Arctic Wings: Birds of the Arctic National Wildlife Refuge. Mountaineers Books. Seattle, WA.

Caffrey, J. M., 2004: Factors controlling net ecosystem metabolism in U.S. estuaries. Estuaries, 27(1), 90-101, doi: 10.1007/bf02803563.

Cahoon, D. R., 2006: A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts, 29(6), 889-898, doi: 10.1007/bf02798648.

Cai, W. J., 2011: Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon incineration? Annual Review of Marine Science, 3, 123-145, doi: 10.1146/annurev-marine-120709-142723.

Cai, W. J., and Y. Wang, 1998: The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnology and Oceanography, 43(4), 657-668, doi: 10.4319/lo.1998.43.4.0657.

Cai, W. J., W. J. Huang, G. W. Luther, 3rd, D. Pierrot, M. Li, J. Testa, M. Xue, A. Joesoef, R. Mann, J. Brodeur, Y. Y. Xu, B. Chen, N. Hussain, G. G. Waldbusser, J. Cornwell, and W. M. Kemp, 2017: Redox reactions and weak buffering capacity lead to acidification in the Chesapeake Bay. Nature Communications, 8(1), 369, doi: 10.1038/s41467-017-00417-7.

Cai, W.-J., X. Hu, W.-J. Huang, M. C. Murrell, J. C. Lehrter, S. E. Lohrenz, W.-C. Chou, W. Zhai, J. T. Hollibaugh, Y. Wang, P. Zhao, X. Guo, K. Gundersen, M. Dai, and G.-C. Gong, 2011: Acidification of subsurface coastal waters enhanced by eutrophication. Nature Geoscience, 4(11), 766-770, doi: 10.1038/ngeo1297.

Callaway, J. C., E. L. Borgnis, R. E. Turner, and C. S. Milan, 2012: Carbon sequestration and sediment accretion in San Francisco Bay tidal wetlands. Estuaries and Coasts, 35(5), 1163-1181, doi: 10.1007/s12237-012-9508-9.

Camacho-Ibar, V. F., J. D. Carriquiry, and S. V. Smith, 2003: Non-conservative P and N fluxes and net ecosystem production in San Quintin Bay, México. Estuaries, 26(5), 1220-1237, doi: 10.1007/bf02803626.

Canuel, E. A., S. S. Cammer, H. A. McIntosh, and C. R. Pondell, 2012: Climate change impacts on the organic carbon cycle at the land-ocean interface. Annual Review of Earth and Planetary Sciences, 40(1), 685-711, doi: 10.1146/annurev-earth-042711-105511.

Cavanaugh, K. C., J. R. Kellner, A. J. Forde, D. S. Gruner, J. D. Parker, W. Rodriguez, and I. C. Feller, 2014: Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences USA, 111(2), 723-727, doi: 10.1073/pnas.1315800111.

CCSP, 2007: First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle. A Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. [A. W. King, L. Dilling, G. P. Zimmerman, D. M. Fairman, R. A. Houghton, G. Marland, A. Z. Rose, and T. J. Wilbanks (eds.)]. National Oceanic and Atmospheric Administration, National Climatic Data Center, Asheville, NC, USA, 242 pp.

CEC, 2016: North American Blue Carbon, 2015 Map Files. Commission for Environmental Cooperation. [URL]

CEC, 2017: Seagrass Sediment Sampling Protocol and Field Study Montreal, Canada. Commission for Environmental Cooperation, 48 pp.

Chan, F., A. B. Boehm, J. A. Barth, E. A. Chornesky, A. G. Dickson, R. A. Feely, B. Hales, T. M. Hill, G. Hofmann, D. Ianson, T. Klinger, J. Largier, J. Newton, T. F. Pedersen, G. N. Somero, M. Sutula, W. W. Wakefield, G. G. Waldbusser, S. B. Weisberg, and E. A. Whiteman, 2016: The West Coast Ocean Acidification and Hypoxia Science Panel: Major Findings, Recommendations, and Actions. California Ocean Science Trust. [URL]

Chan, F., J. A. Barth, C. A. Blanchette, R. H. Byrne, F. Chavez, O. Cheriton, R. A. Feely, G. Friederich, B. Gaylord, T. Gouhier, S. Hacker, T. Hill, G. Hofmann, M. A. McManus, B. A. Menge, K. J. Nielsen, A. Russell, E. Sanford, J. Sevadjian, and L. Washburn, 2017: Persistent spatial structuring of coastal ocean acidification in the California current system. Scientific Reports, 7(1), 2526, doi: 10.1038/s41598-017-02777-y.

Chen, C. T. A., T. H. Huang, Y. C. Chen, Y. Bai, X. He, and Y. Kang, 2013: Air–sea exchanges of CO2 in the world’s coastal seas. Biogeosciences, 10(10), 6509-6544, doi: 10.5194/bg-10-6509-2013.

Chen, C., H. Liu, and R. C. Beardsley, 2003: An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: Application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1), 159-186, doi: 10.1175/1520-0426(2003)020<0159:augfvt>2.0.co;2.

Chmura, G. L., 2013: What do we need to assess the sustainability of the tidal salt marsh carbon sink? Ocean and Coastal Management, 83, 25-31, doi: 10.1016/j.ocecoaman.2011.09.006.

Chmura, G. L., L. Kellman, L. van Ardenne, and G. R. Guntenspergen, 2016: Greenhouse gas fluxes from salt marshes exposed to chronic nutrient enrichment. PLOS One, 11(2), e0149937, doi: 10.1371/journal.pone.0149937.

Chmura, G. L., S. C. Anisfeld, D. R. Cahoon, and J. C. Lynch, 2003: Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4), doi: 10.1029/2002gb001917.

Cloern, J. E., S. Q. Foster, and A. E. Kleckner, 2014: Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences, 11(9), 2477-2501, doi: 10.5194/bg-11-2477-2014.

Cloern, J., A. Robinson, L. Grenier, R. Grossinger, K. Boyer, J. Burau, E. Canuel, J. DeGeorge, J. Drexler, C. Enright, E. Howe, R. Kneib, A. Mueller-Solger, R. Naiman, J. Pinckney, S. Safran, D. Schoellhamer, and C. Simenstad, 2016: Primary production in the Delta: Then and now. San Francisco Estuary and Watershed Science, 14(3), doi: 10.15447/sfews.2016v14iss3art1.

Colman, S. M., P. C. Baucom, J. F. Bratton, T. M. Cronin, J. P. McGeehin, D. Willard, A. R. Zimmerman, and P. R. Vogt, 2002: Radiocarbon dating, chronologic framework, and changes in accumulation rates of Holocene estuarine sediments from Chesapeake Bay. Quaternary Research, 57(1), 58-70, doi: 10.1006/qres.2001.2285.

Contreras-Espinosa, F., and B. G. Warner, 2004: Ecosystem characteristics and management considerations for coastal wetlands in Mexico. Hydrobiologia, 511(1), 233-245, doi: 10.1023/b:hydr.0000014097.74263.54.

Cooley, S., E. Jewett, J. Reichert, L. Robbins, G. Shrestha, D. Wieczorek, and S. Weisberg, 2015: Getting ocean acidification on decision makers’ to-do lists: Dissecting the process through case studies. Oceanography, 25(2), 198-211, doi: 10.5670/oceanog.2015.42.

Couvillion, B. R., H. Beck, D. Schoolmaster, and M. Fischer, 2017: Land area change in coastal Louisiana (1932 to 2016). Scientific Investigations Map 3381, doi: 10.3133/sim3381. [URL]

CRMS, 2017: Louisiana Coastwide Reference Monitoring System. [URL]

Crosswell, J. R., I. C Anderson, J. W. Stanhope, B. Van Dam, M. J. Brush, S. Ensign, M. F. Piehler, B. McKee, M. Bost, and H. W. Paerl, 2017: Carbon budget of a shallow, lagoonal estuary: Transformations and source-sink dynamics along the river-estuary-ocean continuum. Limnology and Oceanography, 62(5), S29-S45, doi: 10.1002/lno.10631.

Crosswell, J. R., M. S. Wetz, B. Hales, and H. W. Paerl, 2012: Air-water CO2 fluxes in the microtidal Neuse River Estuary, North Carolina. Journal of Geophysical Research: Oceans, 117, C08017, doi: 10.1029/2012jc007925.

Crosswell, J. R., M. S. Wetz, B. Hales, and H. W. Paerl, 2014: Extensive CO2 emissions from shallow coastal waters during passage of Hurricane Irene (August 2011) over the Mid-Atlantic coast of the U.S.A. Limnology and Oceanography, 59(5), 1651-1665, doi: 10.4319/lo.2014.59.5.1651.

Dahl, T. E. 2011: Status and Trends of Wetlands in the Conterminous United States 2004 to 2009. U.S. Department of the Interior; Fish and Wildlife Service, Washington, D.C. 108 pp.

Dalrymple, R. W., B. A. Zaitlin, and R. Boyd, 1992: Estuarine facies models; conceptual basis and stratigraphic implications. Journal of Sedimentary Research, 62(6), 1130-1146, doi: 10.1306/d4267a69-2b26-11d7-8648000102c1865d.

Davidson, C. W., 2015: Spatial and Temporal Variability of Coastal Carbonate Chemistry in the Southern California Region. M.S. Thesis, Earth Sciences, University of California San Diego, 37 pp.

Davis, K. A., N. S. Banas, S. N. Giddings, S. A. Siedlecki, P. MacCready, E. J. Lessard, R. M. Kudela, and B. M. Hickey, 2014: Estuary-enhanced upwelling of marine nutrients fuels coastal productivity in the U.S. Pacific Northwest. Journal of Geophysical Research: Oceans, 119(12), 8778-8799, doi: 10.1002/2014jc010248.

Day, J., W. Kemp, A. Yanez-Arancibia, and B. C. Crump, 2013: Estuarine Ecology, 2nd edition. Wiley-Blackwell 568 pp.

de Angelis, M. A., and M. I. Scranton, 1993: Fate of methane in the Hudson River and Estuary. Global Biogeochemical Cycles, 7(3), 509-523, doi: 10.1029/93gb01636.

DeFries, R., and H. Nagendra, 2017: Ecosystem management as a wicked problem. Science, 356(6335), 265-270, doi: 10.1126/science.aal1950.

DeLaune, R. D., and J. R. White, 2011: Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: A case study of the rapidly subsiding Mississippi River Deltaic Plain. Climatic Change, 110(1-2), 297-314, doi: 10.1007/s10584-011-0089-6.

DeLaune, R. D., C. J. Smith, and W. H. Patrick, 1983: Methane release from Gulf Coast wetlands. Tellus B, 35B(1), 8-15, doi: 10.1111/j.1600-0889.1983.tb00002.x.

Dessu, S. B., R. M. Price, T. G. Troxler, and J. S. Kominoski, 2018: Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida Coastal Everglades. Journal of Environmental Management, 211, 164-176, doi: 10.1016/j.jenvman.2018.01.025.

Di Lorenzo, E., and N. Mantua, 2016: Multi-year persistence of the 2014/15 North Pacific Marine Heatwave. Nature Climate Change, 6(11), 1042-1047, doi: 10.1038/nclimate3082.

Doughty, C. L., J. A. Langley, W. S. Walker, I. C. Feller, R. Schaub, and S. K. Chapman, 2015: Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts, 39(2), 385-396, doi: 10.1007/s12237-015-9993-8.

Downing, B. D., E. Boss, B. A. Bergamaschi, J. A. Fleck, M. A. Lionberger, N. K. Ganju, D. H. Schoellhamer, and R. Fujii, 2009: Quantifying fluxes and characterizing compositional changes of dissolved organic matter in aquatic systems in situ using combined acoustic and optical measurements. Limnology and Oceanography: Methods, 7(1), 119-131, doi: 10.4319/lom.2009.7.119.

Drexler, J. Z., C. S. de Fontaine, and T. A. Brown, 2009: Peat accretion histories during the past 6,000 years in marshes of the Sacramento–San Joaquin Delta, CA, USA. Estuaries and Coasts, 32(5), 871-892, doi: 10.1007/s12237-009-9202-8.

Duarte, C. M., I. E. Hendriks, T. S. Moore, Y. S. Olsen, A. Steckbauer, L. Ramajo, J. Carstensen, J. A. Trotter, and M. McCulloch, 2013: Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries and Coasts, 36(2), 221-236, doi: 10.1007/s12237-013-9594-3.

Duarte, C. M., J. J. Middelburg, and N. Caraco, 2005: Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2(1), 1-8, doi: 10.5194/bg-2-1-2005.

Duman, T., and K. V. R. Schäfer, 2018: Partitioning net ecosystem carbon exchange of native and invasive plant communities by vegetation cover in an urban tidal wetland in the New Jersey Meadowlands (USA). Ecological Engineering, 114, 16-24, doi: 10.1016/j.ecoleng.2017.08.031.

Edwards, K. R., and C. E. Proffitt, 2003: Comparison of wetland structural characteristics between created and natural salt marshes in southwest Louisiana, USA. Wetlands, 23(2), 344-356, doi: 10.1672/10-20.

Ekstrom, J. A., L. Suatoni, S. R. Cooley, L. H. Pendleton, G. G. Waldbusser, J. E. Cinner, J. Ritter, C. Langdon, R. van Hooidonk, D. Gledhill, K. Wellman, M. W. Beck, L. M. Brander, D. Rittschof, C. Doherty, P. E. T. Edwards, and R. Portela, 2015: Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change, 5(3), 207-214, doi: 10.1038/nclimate2508.

Ember, L. M., D. F. Williams, and J. T. Morris, 1987: Processes that influence carbon isotope variations in salt-marsh sediments. Marine Ecology Progress Series, 36(1), 33-42, doi: DOI 10.3354/meps036033.

Evans, W., B. Hales, P. G. Strutton, and D. Ianson, 2012: Sea-air CO2 fluxes in the Western Canadian coastal ocean. Progress in Oceanography, 101(1), 78-91, doi: 10.1016/j.pocean.2012.01.003.

Ezcurra, P., E. Ezcurra, P. P. Garcillan, M. T. Costa, and O. Aburto­Oropeza, 2016: Coastal landforms and accumulation of mangrove peat increase carbon sequestration and storage. Proceedings of the National Academy of Sciences USA, 113(16), 4404-4409, doi: 10.1073/pnas.1519774113.

Fabry, V., J. McClintock, J. Mathis, and J. Grebmeier, 2009: Ocean acidification at high latitudes: The bellwether. Oceanography, 22(4), 160-171, doi: 10.5670/oceanog.2009.105.

Fagan, K. E., and F. T. Mackenzie, 2007: Air–sea CO2 exchange in a subtropical estuarine-coral reef system, Kaneohe Bay, Oahu, Hawaii. Marine Chemistry, 106(1-2), 174-191, doi: 10.1016/j.marchem.2007.01.016.

Fagherazzi, S., G. Mariotti, P. Wiberg, and K. McGlathery, 2013: Marsh collapse does not require sea level rise. Oceanography, 26(3), 70-77, doi: 10.5670/oceanog.2013.47.

Feely, R. A., S. R. Alin, J. Newton, C. L. Sabine, M. Warner, A. Devol, C. Krembs, and C. Maloy, 2010: The combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an urbanized estuary. Estuarine, Coastal and Shelf Science, 88(4), 442-449, doi: 10.1016/j.ecss.2010.05.004.

​Feely, R. A., T. Klinger, J. A. Newton, and M. Chadsey, 2012: Scientific Summary of Ocean Acidification in Washington State Marine Waters. National Oceanic and Atmospheric Administration Oceanic and Atmospheric Research Division Special Report.

Feng, Y., M. A. M., Friedrichs, J., Wilkin, H., Tian, Q., Yang, E. E., Hofmann, J. D., Wiggert, R. R., Hood, 2015. Chesapeake Bay nitrogen fluxes derived from a land-estuarine-ocean biogeochemical modeling system: Model description, evaluation and nitrogen budgets. Journal of Geophysical Research: Biogeosciences, 120, 1666-1695, doi: 10.1002/2015JG002931.

Firestone, M., and E. Davidson, 1989: Microbiological basis of NO and N2O production and consumption in soil. In: Exchange of Trace Gases between terrestrial Ecosystems and the Atmosphere 47, [M. O. Andreac and D. S. Schimel (eds.)]. John Wiley and Sons Ltd., 7-21 pp.

Forbrich, I., and A. E. Giblin, 2015: Marsh-atmosphere CO2 exchange in a New England salt marsh. Journal of Geophysical Research: Biogeosciences, 120(9), 1825-1838, doi: 10.1002/2015jg003044.

Fourqurean, J. W., C. M. Duarte, H. Kennedy, N. Marbà, M. Holmer, M. A. Mateo, E. T. Apostolaki, G. A. Kendrick, D. Krause­Jensen, K. J. McGlathery, and O. Serrano, 2012: Seagrass ecosystems as a globally significant carbon stock. Nature Geoscience, 5(7), 505-509, doi: 10.1038/ngeo1477.

Gabler, C. A., M. J. Osland, J. B. Grace, C. L. Stagg, R. H. Day, S. B. Hartley, N. M. Enwright, A. S. From, M. L. McCoy, and J. L. McLeod, 2017: Macroclimatic change expected to transform coastal wetland ecosystems this century. Nature Climate Change, 7(2), 142-147, doi: 10.1038/nclimate3203.

Gallagher, J. L., R. J. Reimold, R. A. Linthurst, and W. J. Pfeiffer, 1980: Aerial production, mortality, and mineral accumulation­export dynamics in Spartina alterniflora and Juncus roemerianus plant stands in a Georgia salt marsh. Ecology, 61(2), 303-312, doi: 10.2307/1935189.

Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton, 2008: Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320(5878), 889-892, doi: 10.1126/science.1136674.

Ganju, N. K., M. Hayn, S.-N. Chen, R. W. Howarth, P. J. Dickhudt, A. L. Aretxabaleta, and R. Marino, 2012: Tidal and groundwater fluxes to a shallow, microtidal estuary: Constraining inputs through field observations and hydrodynamic modeling. Estuaries and Coasts, 35(5), 1285-1298, doi: 10.1007/s12237-012-9515-x.

Gelesh, L., K. Marshall, W. Boicourt, and L. Lapham, 2016: Methane concentrations increase in bottom waters during summertime anoxia in the highly eutrophic estuary, Chesapeake Bay, U.S.A. Limnology and Oceanography, 61(S1), S253-S266, doi: 10.1002/lno.10272.

Giri, C. P., and J. Long, 2014: Mangrove reemergence in the northernmost range limit of Eastern Florida. Proceedings of the National Academy of Sciences USA, 111(15), E1447-1448, doi: 10.1073/pnas.1400687111.

Giri, C., E. Ochieng, L. L. Tieszen, Z. Zhu, A. Singh, T. Loveland, J. Masek, and N. Duke, 2011: Status and distribution of mangrove forests of the world using Earth observation satellite data. Global Ecology and Biogeography, 20(1), 154-159, doi: 10.1111/j.1466-8238.2010.00584.x.

Hales, B., A. Suhrbier, G. G. Waldbusser, R. A. Feely, and J. A. Newton, 2016: The carbonate chemistry of the “fattening line,” Willapa Bay, 2011–2014. Estuaries and Coasts, 40(1), 173-186, doi: 10.1007/s12237-016-0136-7.

Hamilton, S. E., and D. Casey, 2016: Creation of a high spatio­temporal resolution global database of Continuous Mangrove Forest Cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729-738, doi: 10.1111/geb.12449.

Hernández-Ayón, J. M., V. F. Camacho-Ibar, A. Mejía-Trejo, and A. Cabello-Pasini, 2007: Variabilidad del CO2 total durante eventos de surgencia en bahía de san quintín, Baja California Mexico. In: Carbono en Ecosistemas Acuáticos de México. Secretaría de Medio Ambiente y Recursos Naturales Instituto Nacional de Ecología Centro de Investigaciones Científicas y de Educación de Ensenada, 187-200 pp.

Herrmann, M., R. G. Najjar, W. M. Kemp, R. B. Alexander, E. W. Boyer, W.-J. Cai, P. C. Griffith, K. D. Kroeger, S. L. McCallister, and R. A. Smith, 2015: Net ecosystem production and organic carbon balance of U.S. east coast estuaries: A synthesis approach. Global Biogeochemical Cycles, 29(1), 96-111, doi: 10.1002/2013gb004736.

Hinson, A. L., R. A. Feagin, M. Eriksson, R. G. Najjar, M. Herrmann, T. S. Bianchi, M. Kemp, J. A. Hutchings, S. Crooks, and T. Boutton, 2017: The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. Global Change Biology, 1-13, doi: 10.1111/gcb.13811.

Holm, G. O., B. C. Perez, D. E. McWhorter, K. W. Krauss, D. J. Johnson, R. C. Raynie, and C. J. Killebrew, 2016: Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects. Wetlands, 36(3), 401-413, doi: 10.1007/s13157-016-0746-7.

Holmquist, J. R., L. Windham-Myers, N. Bliss, S. Crooks, J. T. Morris, J. P. Megonigal, T. Troxler, D. Weller, J. Callaway, J. Drexler, M. C. Ferner, M. E. Gonneea, K. D. Kroeger, L. Schile-Beers, I. Woo, K. Buffington, J. Breithaupt, B. M. Boyd, L. N. Brown, N. Dix, L. Hice, B. P. Horton, G. M. MacDonald, R. P. Moyer, W. Reay, T. Shaw, E. Smith, J. M. Smoak, C. Sommerfield, K. Thorne, D. Velinsky, E. Watson, K. W. Grimes, and M. Woodrey, 2018a: Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Scientific Reports, 8(1), 9478, doi: 10.1038/s41598-018-26948-7.

Holmquist, J., L. Windham-Myers, B. Bernal, K. B. Byrd, S. Crooks, M. E. Gonneea, N. Herold, S. H. Knox, K. D. Kroeger, J. McCombs, J. P. Megonigal, L. Meng, J. T. Morris, A. E. Sutton-Grier, T. G. Troxler, and D. E. Weller, 2018b: Uncertainty in United States coastal wetland greenhouse gas inventorying. Environmental Research Letters,​ 105350, doi: 10.1088/1748-9326/aae157​.

Hopkinson, C. S., 1985: Shallow-water benthic and pelagic metabolism. Marine Biology, 87(1), 19-32, doi: 10.1007/bf00397002.

Hopkinson, C. S., 1988: Patterns of organic carbon exchange between coastal ecosystems. In: Coastal-Offshore Ecosystem Interactions. Proceedings of a symposium sponsored by SCOR, UNESCO, San Francisco Society, California Sea Grant program, and the U.S. Department of Interior, Mineral Management Service held at San Francisco State University, Tiburon, California, April 7–22, 1986. [B. O. Jansson (ed.)]. Springer Berlin Heidelberg, 122-154 pp.

Hopkinson, C. S., and J. J. Vallino, 1995: The relationships among man’s activities in watersheds and estuaries: A model of runoff effects on patterns of estuarine community metabolism. Estuaries, 18(4), 598, doi: 10.2307/1352380.

Hopkinson, C. S., W.-J. Cai, and X. Hu, 2012: Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability, 4(2), 186-194, doi: 10.1016/j.cosust.2012.03.005.

Hossler, K., and J. E. Bauer, 2013: Amounts, isotopic character, and ages of organic and inorganic carbon exported from rivers to ocean margins: 1. Estimates of terrestrial losses and inputs to the Middle Atlantic Bight. Global Biogeochemical Cycles, 27(2), 331-346, doi: 10.1002/gbc.20033.

Howard, J., A. Sutton-Grier, D. Herr, J. Kleypas, E. Landis, E. McLeod, E. Pidgeon, and S. Simpson, 2017: Clarifying the role of coastal and marine systems in climate mitigation. Frontiers in Ecology and the Environment, 15(1), 42-50, doi: 10.1002/fee.1451.

Howarth, R. W., D. Anderson, J. Cloern, C. Elfring, C. Hopkinson, B. Lapointe, T. Malone, N. Marcus, K. McGlathery, A. Sharpley, and D. Walker, 2000: Nutrient pollution of coastal rivers, bays and seas. Issues in Ecology, 7, 1-15.

Huang, W. J., W. J. Cai, Y. Wang, S. E. Lohrenz, and M. C. Murrell, 2015: The carbon dioxide system on the Mississippi River­dominated continental shelf in the Northern Gulf of Mexico: 1. Distribution and air-sea CO2 flux. Journal of Geophysical Research: Oceans, 120(3), 1429-1445, doi: 10.1002/2014JC010498.

Hunt, C. W., J. E. Salisbury, and D. Vandemark, 2014: CO2 input dynamics and air–sea exchange in a large New England estuary. Estuaries and Coasts, 37(5), 1078-1091, doi: 10.1007/s12237-013-9749-2.

Hunt, C. W., J. E. Salisbury, and D. Vandemark, 2011: Contribution of non-carbonate anions to total alkalinity and overestimation of pCO2 in New England and New Brunswick rivers. Biogeosciences, 8(10), 3069-3076, doi: 10.5194/bg-8-3069-2011.

Irby, I. D., M. A. M. Friedrichs, C. T. Friedrichs, A. J. Bever, R. R. Hood, L. W. J. Lanerolle, M. Li, L. Linker, M. E. Scully, K. Sellner, J. Shen, J. Testa, H. Wang, P. Wang, and M. Xia, 2016: Challenges associated with modeling low-oxygen waters in Chesapeake Bay: A multiple model comparison. Biogeosciences, 13(7), 2011-2028, doi: 10.5194/bg-13-2011-2016.

Irby, I. D., M. A. M. Friedrichs, F. Da, and K. E. Hinson, 2018: The competing impacts of climate change and nutrient reductions on dissolved oxygen in Chesapeake Bay. Biogeosciences, 15(9), 2649-2668, doi: 10.5194/bg-15-2649-2018.

Jackley, J., L. Gardner, A. F. Djunaedi, and A. K. Salomon, 2016: Ancient clam gardens, traditional management portfolios, and the resilience of coupled human-ocean systems. Ecology and Society, 21(4), doi: 10.5751/es-08747-210420.

Jankowski, K. L., T. E. Tornqvist, and A. M. Fernandes, 2017: Vulnerability of Louisiana’s coastal wetlands to present-day rates of relative sea-level rise. Nature Communications, 8, 14792, doi: 10.1038/ncomms14792.

Jiang, L. Q., W. J. Cai, Y. Wang, and J. E. Bauer, 2013: Influence of terrestrial inputs on continental shelf carbon dioxide. Biogeosciences, 10(2), 839-849, doi: 10.5194/bg-10-839-2013.

Jiang, L.-Q., W.-J. Cai, and Y. Wang, 2008: A comparative study of carbon dioxide degassing in river- and marine-dominated estuaries. Limnology and Oceanography, 53(6), 2603-2615, doi: 10.4319/lo.2008.53.6.2603.

Joesoef, A., W. J. Huang, Y. Gao, and W. J. Cai, 2015: Air–water fluxes and sources of carbon dioxide in the Delaware Estuary: Spatial and seasonal variability. Biogeosciences, 12(20), 6085-6101, doi: 10.5194/bg-12-6085-2015.

Johannessen, S. C., R. W. Macdonald, and D. W. Paton, 2003: A sediment and organic carbon budget for the greater Strait of Georgia. Estuarine, Coastal and Shelf Science, 56(3-4), 845-860, doi: 10.1016/s0272-7714(02)00303-7.

Kathilankal, J. C., T. J. Mozdzer, J. D. Fuentes, P. D’Odorico, K. J. McGlathery, and J. C. Zieman, 2008: Tidal influences on carbon assimilation by a salt marsh. Environmental Research Letters, 3(4), 044010, doi: 10.1088/1748-9326/3/4/044010.

Kelley, C. A., C. S. Martens, and W. Ussler, 1995: Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography, 40(6), 1112-1129, doi: 10.4319/lo.1995.40.6.1112.

Kemp, W. M., E. M. Smith, M. Marvin-DiPasquale, and W. R. Boynton, 1997: Organic carbon balance and net ecosystem metabolism in Chesapeake Bay. Marine Ecology Progress Series, 150, 229-248, doi: 10.3354/meps150229.

Kennedy, H., D. M. Alongi, A. Karim, G. Chen, G. L. Chmura, S. Crooks, J. G. Kairo, B. Liao, and G. Lin, 2014: Coastal Wetlands. In: 2013 Supplement to the 2006 Intergovernmental Panel on Climate Change Guidelines for National Greenhouse Gas Inventories: Wetlands. [T. Hiraishi, T. Krug, K. Tanabe, N. Srivastava, J. Baasansuren, M. Fukuda, et al. (eds.)]. Switzerland, pp 4.1-4.55.

Kennedy, H., J. Beggins, C. M. Duarte, J. W. Fourqurean, M. Holmer, N. Marbà, and J. J. Middelburg, 2010: Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochemical Cycles, 24(4), doi: 10.1029/2010gb003848.

Kenov Ascione, I., F. Campuzano, G. Franz, R. Fernandes, C. Viegas, J. Sobrinho, H. de Pablo, A. Amaral, L. Pinto, M. Mateus, and R. Neves, 2014: Advances in modeling of water quality in estuaries. In: Remote Sensing and Modeling: Advances in Coastal and Marine Resources. [C. W. Finkl and C. Makowski (eds.)]. Coastal Research Library 9. Springer, 237-276 pp.

Kirwan, M. L., A. B. Murray, J. P. Donnelly, and D. R. Corbett, 2011: Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates. Geology, 39(5), 507-510, doi: 10.1130/g31789.1.

Kirwan, M. L., and J. P. Megonigal, 2013: Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504(7478), 53-60, doi: 10.1038/nature12856.

Kirwan, M. L., and L. K. Blum, 2011: Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences, 8(4), 987-993.

Kirwan, M. L., G. R. Guntenspergen, A. D’Alpaos, J. T. Morris, S. M. Mudd, and S. Temmerman, 2010: Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 37(23), doi: 10.1029/2010gl045489.

Kirwan, M. L., G. R. Guntenspergen, and J. T. Morris, 2009: Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Global Change Biology, 15(8), 1982-1989, doi: 10.1111/j.1365-2486.2008.01834.x.

Knox, S. H., L. Windham‐Myers, F. Anderson, C. Sturtevant, and B. Bergamaschi, 2018: Direct and indirect effects of tides on ecosystem‐scale CO2 exchange in a brackish tidal marsh in Northern California. Journal of Geophysical Research: Biogeosciences, 123(3), 787-806, doi: 10.1002/2017JG004048.

Kolker, A. S., M. A. Allison, and S. Hameed, 2011: An evaluation of subsidence rates and sea-level variability in the Northern Gulf of Mexico. Geophysical Research Letters, 38(21), doi: 10.1029/2011gl049458.

Kone, Y. J. M., and A. V. Borges, 2008: Dissolved inorganic carbon dynamics in the waters surrounding forested mangroves of the Ca Mau Province (Vietnam). Estuarine, Coastal and Shelf Science, 77(3), 409-421, doi: 10.1016/j.ecss.2007.10.001.

Krauss, K. W., A. S. From, T. W. Doyle, T. J. Doyle, and M. J. Barry, 2011: Sea-level rise and landscape change influence mangrove encroachment onto marsh in the Ten Thousand Islands Region of Florida, USA. Journal of Coastal Conservation, 15(4), 629-638, doi: 10.1007/s11852-011-0153-4.

Krauss, K. W., and J. L. Whitbeck, 2011: Soil greenhouse gas fluxes during wetland forest retreat along the Lower Savannah River, Georgia (USA). Wetlands, 32(1), 73-81, doi: 10.1007/s13157-011-0246-8.

Krauss, K. W., G. O. Holm, B. C. Perez, D. E. McWhorter, N. Cormier, R. F. Moss, D. J. Johnson, S. C. Neubauer, and R. C. Raynie, 2016: Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. Journal of Geophysical Research: Biogeosciences, 121(6), 1503-1521, doi: 10.1002/2015JG003224.

Kroeger, K. D., and M. A. Charette, 2008: Nitrogen biogeochemistry of submarine groundwater discharge. Limnology and Oceanography, 53(3), 1025-1039, doi: 10.4319/lo.2008.53.3.1025.

Kroeger, K. D., S. Crooks, S. Moseman-Valtierra, and J. Tang, 2017: Restoring tides to reduce methane emissions in impounded wetlands: A new and potent blue carbon climate change intervention. Scientific Reports, 7(1), 11914, doi: 10.1038/s41598-017-12138-4.

Lagomasino, D., R. M. Price, D. Whitman, P. K. E. Campbell, and A. Melesse, 2014: Estimating major ion and nutrient concentrations in mangrove estuaries in Everglades National Park using leaf and satellite reflectance. Remote Sensing of Environment, 154, 202-218, doi: 10.1016/j.rse.2014.08.022.

Lane, R. R., S. K. Mack, J. W. Day, R. D. DeLaune, M. J. Madison, and P. R. Precht, 2016: Fate of soil organic carbon during wetland loss. Wetlands, 36(6), 1167-1181, doi: 10.1007/s13157-016-0834-8.

Lara-Lara, J. R., B. E. Frey, and F. L. Small, 1990: Primary production in the Columbia River Estuary I. Spatial temporal variability of properties. Pacific Science, 44(1), 17-37.

Laruelle, G. G., H. H. Dürr, R. Lauerwald, J. Hartmann, C. P. Slomp, N. Goossens, and P. A. G. Regnier, 2013: Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrology and Earth System Sciences, 17(5), 2029-2051, doi: 10.5194/hess-17-2029-2013.

Laruelle, G. G., R. Lauerwald, B. Pfeil, and P. Regnier, 2014: Regionalized global budget of the CO2 exchange at the air-water interface in continental shelf seas. Global Biogeochemical Cycles, 28(11), 1199-1214, doi: 10.1002/2014gb004832.

Lu, W., J. Xiao, F. Liu, Y. Zhang, C. Liu, and G. Lin, 2017: Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: A meta-analysis of eddy covariance data. Global Change Biology, 23(3), 1180-1198, doi: 10.1111/gcb.13424.

Mackenzie, F. T., E. H. De Carlo, and A. Lerman, 2012: Coupled C, N, P, and O biogeochemical cycling at the land-ocean interface. In: Biogeochemistry, Vol. 5. Elsevier Inc., 26 pp.

Magenheimer, J. F., T. R. Moore, G. L. Chmura, and R. J. Daoust, 1996: Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. Estuaries, 19(1), 139, doi: 10.2307/1352658.

Marchio, D., M. Savarese, B. Bovard, and W. Mitsch, 2016: Carbon sequestration and sedimentation in mangrove swamps influenced by hydrogeomorphic conditions and urbanization in southwest Florida. Forests, 7(6), 116, doi: 10.3390/f7060116.

Mariotti, G., and S. Fagherazzi, 2013: Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proceedings of the National Academy of Sciences USA, 110(14), 5353-5356, doi: 10.1073/pnas.1219600110.

Mariotti, G., S. Fagherazzi, P. L. Wiberg, K. J. McGlathery, L. Carniello, and A. Defina, 2010: Influence of storm surges and sea level on shallow tidal basin erosive processes. Journal of Geophysical Research, 115(C11), doi: 10.1029/2009jc005892.

Marsh, A. L., K. A. Becraft, and G. A. Somorjai, 2005: Methane dissociative adsorption on the Pt(111) surface over the 300−500 K temperature and 1−10 Torr pressure ranges. The Journal of Physical Chemistry B, 109(28), 13619-13622, doi: 10.1021/jp051718+.

Marsh, A. S., J. A. Arnone, B. T. Bormann, and J. C. Gordon, 2000: The role of equisetum in nutrient cycling in an Alaskan shrub wetland. Journal of Ecology, 88(6), 999-1011, doi: 10.1046/j.1365-2745.2000.00520.x.

Martin, R. M., and S. Moseman-Valtierra, 2015: Greenhouse gas fluxes vary between Phragmites australis and native vegetation zones in coastal wetlands along a salinity gradient. Wetlands, 35(6), 1021-1031, doi: 10.1007/s13157-015-0690-y.

Mayorga, E., S. P. Seitzinger, J. A. Harrison, E. Dumont, A. H. W. Beusen, A. F. Bouwman, B. M. Fekete, C. Kroeze, and G. Van Drecht, 2010: Global nutrient export from WaterSheds 2 (NEWS 2): Model development and implementation. Environmental Modelling and Software, 25(7), 837-853, doi: 10.1016/j.envsoft.2010.01.007.

McCabe, R. M., B. M. Hickey, R. M. Kudela, K. A. Lefebvre, N. G. Adams, B. D. Bill, F. M. Gulland, R. E. Thomson, W. P. Cochlan, and V. L. Trainer, 2016: An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophysical Research Letters, 43(19), 10366-10376, doi: 10.1002/2016GL070023.

McClelland, J. W., R. M. Holmes, K. H. Dunton, and R. W. Macdonald, 2012: The Arctic Ocean estuary. Estuaries and Coasts, 35(2), 353-368, doi: 10.1007/s12237-010-9357-3.

McGillis, W. R., J. B. Edson, J. E. Hare, and C. W. Fairall, 2001: Direct covariance air-sea CO2 fluxes. Journal of Geophysical Research: Oceans, 106(C8), 16729-16745, doi: 10.1029/2000jc000506.

McKee, K. L., D. R. Cahoon, and I. C. Feller, 2007: Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16(5), 545-556, doi: 10.1111/j.1466-8238.2007.00317.x.

McLeod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger, and B. R. Silliman, 2011: A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552-560, doi: 10.1890/110004.

Meeder, J. F., and R. W. Parkinson, 2017: SE Saline Everglades transgressive sedimentation in response to historic acceleration in sea-level rise: A viable marker for the base of the Anthropocene? Journal of Coastal Research, 342, 490-497, doi: 10.2112/jcoastres-d-17-00031.1.

Megonigal, J. P., and W. H. Schlesinger, 2002: Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles, 16(4), 35-1 to 35-10, doi: 10.1029/2001GB001594.

Meybeck, M., 2003: Global analysis of river systems: From Earth system controls to anthropocene syndromes. Philosophical Transactions of the Royal Society B. Biological Sciences, 358(1440), 1935-1955, doi: 10.1098/rstb.2003.1379.

Montagna, P. A., J. Brenner, J. Gibeaut, and S. Morehead, 2009: Coastal impacts. In: The Impact of Global Warming on Texas. [J. Schmandt, J. Clarkson, and G. R. North (eds.)]. University of Texas Press, Austin, TX, 318 pp.

Moore, W. S., 1996: Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature, 380(6575), 612-614, doi: 10.1038/380612a0.

Moosdorf, N., J. Hartmann, R. Lauerwald, B. Hagedorn, and S. Kempe, 2011: Atmospheric CO2 consumption by chemical weathering in North America. Geochimica et Cosmochimica Acta, 75(24), 7829-7854, doi: 10.1016/j.gca.2011.10.007.

Morris, J. T., D. C. Barber, J. C. Callaway, R. Chambers, S. C. Hagen, C. S. Hopkinson, B. J. Johnson, P. Megonigal, S. C. Neubauer, T. Troxler, and C. Wigand, 2016: Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earths Future, 4(4), 110-121, doi: 10.1002/2015EF000334.

Moseman-Valtierra, S., O. I. Abdul-Aziz, J. Tang, K. S. Ishtiaq, K. Morkeski, J. Mora, R. K. Quinn, R. M. Martin, K. Egan, E. Q. Brannon, J. Carey, and K. D. Kroeger, 2016: Carbon dioxide fluxes reflect plant zonation and belowground biomass in a coastal marsh. Ecosphere, 7(11), e01560, doi: 10.1002/ecs2.1560.

Moseman-Valtierra, S., R. Gonzalez, K. D. Kroeger, J. Tang, W. C. Chao, J. Crusius, J. Bratton, A. Green, and J. Shelton, 2011: Short-term nitrogen additions can shift a coastal wetland from a sink to a source of N2O. Atmospheric Environment, 45(26), 4390-4397, doi: 10.1016/j.atmosenv.2011.05.046.

Mueller, P., R. N. Hager, J. E. Meschter, T. J. Mozdzer, J. A. Langley, K. Jensen, and J. P. Megonigal, 2016: Complex invader-ecosystem interactions and seasonality mediate the impact of non-native phragmites on CH4 emissions. Biological Invasions, 18(9), 2635-2647, doi: 10.1007/s10530-016-1093-6.

Müller, P. J., and E. Suess, 1979: Productivity, sedimentation rate, and sedimentary organic matter in the oceans—I. Organic carbon preservation. Deep Sea Research Part A. Oceanographic Research Papers, 26(12), 1347-1362, doi: 10.1016/0198-0149(79)90003-7.

Munoz-Anderson, M. A., J. R. Lara-Lara, S. Alvarez-Borrego, C. Bazan-Guzman, and M. de la Cruz-Orozco, 2015: Water-air carbon fluxes in the coastal upwelling zone off Northern Baja California. Ciencias Marinas, 41(2), 157-168, doi: 10.7773/cm.v41i2.2484.

Nahlik, A. M., and M. S. Fennessy, 2016: Carbon storage in US wetlands. Nature Communications, 7, 13835, doi: 10.1038/ncomms13835.

Najjar, R. G., M. Herrmann, R. Alexander, E. W. Boyer, D. J. Burdige, D. Butman, W. J. Cai, E. A. Canuel, R. F. Chen, M. A. M. Friedrichs, R. A. Feagin, P. C. Griffith, A. L. Hinson, J. R. Holmquist, X. Hu, W. M. Kemp, K. D. Kroeger, A. Mannino, S. L. McCallister, W. R. McGillis, M. R. Mulholland, C. H. Pilskaln, J. Salisbury, S. R. Signorini, P. St-Laurent, H. Tian, M. Tzortziou, P. Vlahos, Z. A. Wang, and R. C. Zimmerman, 2018: Carbon budget of tidal wetlands, estuaries, and shelf waters of Eastern North America. Global Biogeochemical Cycles, 32(3), 389-416, doi: 10.1002/2017gb005790.

NASA, 2017a: National Aeronautics and Space Administration, Blue Carbon Monitoring System. [URL]

NASA, 2017b: National Aeronautics and Space Administration, Wetland-Estuary Transports and Carbon Budgets (WETCARB) project. [URL]

Nellemann, C., E. Corcoran, C. Duarte, L. Vales, C. Fonseca, and G. Grimsditch, 2009: Blue Carbon - The Role of Healthy Oceans in Binding Carbon. GRID-Arendal: United Nations Environment Programme. [URL]

Neubauer, S. C., R. B. Franklin, and D. J. Berrier, 2013: Saltwater intrusion into tidal freshwater marshes alters the biogeochemical processing of organic carbon. Biogeosciences, 10(12), 8171-8183, doi: 10.5194/bg-10-8171-2013.

Neubauer, S. C., W. D. Miller, and I. C. Anderson, 2000: Carbon cycling in a tidal freshwater marsh ecosystem: A carbon gas flux study. Marine Ecology Progress Series, 199, 13-30.

NOAA, 1985: National Estuarine Inventory Data Atlas. Volume 1: Physical and Hydrologic Characteristics. National Ocean Service, National Oceanic and Atmospheric Administration. [URL]

NOAA, 2015: Land Cover Atlas. Coastal Change Analysis Program (C-CAP) Regional Land Cover. National Oceanic and Atmospheric Administration, Office for Coastal Management. Charleston, SC, NOAA Office for Coastal Management. [URL]

NOAA, 2017: National Oceanic and Atmospheric Administration Office for Coastal Management, Digital Coast. [URL]

Orton, P. M., W. R. McGillis, and C. J. Zappa, 2010: Sea breeze forcing of estuary turbulence and air-water CO2 exchange. Geophysical Research Letters, 37(13), doi: 10.1029/2010gl043159.

Osland, M. J., A. C. Spivak, J. A. Nestlerode, J. M. Lessmann, A. E. Almario, P. T. Heitmuller, M. J. Russell, K. W. Krauss, F. Alvarez, D. D. Dantin, J. E. Harvey, A. S. From, N. Cormier, and C. L. Stagg, 2012: Ecosystem development after mangrove wetland creation: Plant–soil change across a 20-year chronosequence. Ecosystems, 15(5), 848-866, doi: 10.1007/s10021-012-9551-1.

Ouyang, X., and S. Y. Lee, 2014: Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences, 11(18), 5057-5071, doi: 10.5194/bg-11-5057-2014.

Packalen, M. S., S. A. Finkelstein, and J. W. McLaughlin, 2014: Carbon storage and potential methane production in the Hudson Bay lowlands since mid-Holocene peat initiation. Nature Communications, 5, 4078, doi: 10.1038/ncomms5078.

Palaima, A., 2012: Ecology, Conservation, and Restoration of Tidal Marshes: The San Francisco Estuary. University of California Press, 288 pp.

Paulsen M.-L., A. J. Andersson, L. Aluwihare, T. Cyronak, S. ­D’Angelo, C. Davidson, H. Elwany, S. Giddings, M. Harvey, H. Page, M. Porrachia, and S. Schroeter, 2017: Temporal changes in seawater carbonate chemistry and carbon export from a Southern California estuary. Estuaries and Coasts, 41(4), 1050-1068, doi: 10.1007/s12237-017-0345-8.

Pendleton, L., D. C. Donato, B. C. Murray, S. Crooks, W. A. Jenkins, S. Sifleet, C. Craft, J. W. Fourqurean, J. B. Kauffman, N. Marba, P. Megonigal, E. Pidgeon, D. Herr, D. Gordon, and A. Baldera, 2012: Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS One, 7(9), e43542, doi: 10.1371/journal.pone.0043542.

Perillo, G. M. E., and M. C. Picollo, 1995: Definition and geomorphologic classification of estuaries. In: Introduction to Estuary Studies. [M. C. Picollo, G. M. E. Perillo, and Pino-Quivira (eds.)].

Peteet, D., D. Pederson, D. Kurdyla, and T. Guilderson, 2006: Hudson River paleoecology from marshes. In: Hudson River Fishes and their Environment. [J. R. Waldman, K. E. Limburg, and D. Strayer (eds.)]. American Fisheries Society Monograph 113-128 pp.

Pfeiffer-Herbert, A. S., F. G. Prahl, B. Hales, J. A. Lerczak, S. D. Pierce, and M. D. Levine, 2016: High resolution sampling of methane transport in the Columbia River near-field plume: Implications for sources and sinks in a river-dominated estuary. Limnology and Oceanography, 61(S1), S204-S220, doi: 10.1002/lno.10221.

Pickart, R. S., L. M. Schulze, G. W. K. Moore, M. A. Charette, K. R. Arrigo, G. van Dijken, and S. L. Danielson, 2013: Long-term trends of upwelling and impacts on primary productivity in the Alaskan Beaufort Sea. Deep Sea Research Part I: Oceanographic Research Papers, 79, 106-121, doi: 10.1016/j.dsr.2013.05.003.

Plafker, G., 1965: Tectonic deformation associated with the 1964 Alaska earthquake: The earthquake of 27 March 1964 resulted in observable crustal deformation of unprecedented areal extent. Science, 148(3678), 1675-1687, doi: 10.1126/science.148.3678.1675.

Poffenbarger, H. J., B. A. Needelman, and J. P. Megonigal, 2011: Salinity influence on methane emissions from tidal marshes. Wetlands, 31(5), 831-842, doi: 10.1007/s13157-011-0197-0.

Premuzic, E. T., C. M. Benkovitz, J. S. Gaffney, and J. J. Walsh, 1982: The nature and distribution of organic matter in the surface sediments of world oceans and seas. Organic Geochemistry, 4(2), 63-77, doi: 10.1016/0146-6380(82)90009-2.

Pritchard, D. W., 1967: What is an estuary: Physical viewpoint. In: Estuaries. [G. H. Lauff (ed.)]. American Association for the Advancement of Science, Washington, D.C. Publication No. 83, pp. 3-5.

Project Geocarbon, 2017: Operational global carbon observing system. [URL]

Raymond, P. A., and C. S. Hopkinson, 2003: Ecosystem modulation of dissolved carbon age in a temperate marsh-dominated estuary. Ecosystems, 6(7), 694-705, doi: 10.1007/s10021-002-0213-6.

Raymond, P. A., and J. E. Bauer, 2001: Use of 14C and 13C natural abundances for evaluating riverine, estuarine, and coastal DOC and POC sources and cycling: A review and synthesis. Organic Geochemistry, 32(4), 469-485, doi: 10.1016/s0146-6380(00)00190-x.

Raymond, P. A., J. E. Bauer, and J. J. Cole, 2000: Atmospheric CO2 evasion, dissolved inorganic carbon production, and net heterotrophy in the York River estuary. Limnology and Oceanography, 45(8), 1707-1717, doi: 10.4319/lo.2000.45.8.1707.

Raymond, P. A., N. H. Oh, R. E. Turner, and W. Broussard, 2008: Anthropogenically enhanced fluxes of water and carbon from the Mississippi River. Nature, 451(7177), 449-452, doi: 10.1038/nature06505.

Redfield, A. C., 1967: The ontogeny of a salt marsh estuary. In: Estuaries. [G. H. Lauff (ed.)]. American Association for the Advancement of Science, Washington, D.C. Publication No. 83.

Regnier, P., P. Friedlingstein, P. Ciais, F. T. Mackenzie, N. Gruber, I. A. Janssens, G. G. Laruelle, R. Lauerwald, S. Luyssaert, A. J. Andersson, S. Arndt, C. Arnosti, A. V. Borges, A. W. Dale, A. Gallego-Sala, Y. Goddéris, N. Goossens, J. Hartmann, C. Heinze, T. Ilyina, F. Joos, D. E. LaRowe, J. Leifeld, F. J. R. Meysman, G. Munhoven, P. A. Raymond, R. Spahni, P. Suntharalingam, and M. Thullner, 2013: Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8), 597-607, doi: 10.1038/ngeo1830.

Reid, M. C., R. Tripathee, K. V. R. Schäfer, and P. R. Jaffé, 2013: Tidal marsh methane dynamics: Difference in seasonal lags in emissions driven by storage in vegetated versus unvegetated sediments. Journal of Geophysical Research: Biogeosciences, 118(4), 1802-1813, doi: 10.1002/2013JG002438.

Reimer, J. J., R. Vargas, S. V. Smith, R. Lara-Lara, G. Gaxiola-Castro, J. Martín Hernández-Ayón, A. Castro, M. Escoto-Rodriguez, and J. Martínez-Osuna, 2013: Air-sea CO2 fluxes in the near-shore and intertidal zones influenced by the California current. Journal of Geophysical Research: Oceans, 118(10), 4795-4810, doi: 10.1002/jgrc.20319.

Reimnitz, E., 1966: Late Quaternary History and Sedimentation of the Copper River Delta and Vicinity, Alaska. Ph.D. Thesis, University of California San Diego, CA, 160 pp.

Ren, W., H. Tian, B. Tao, J. Yang, S. Pan, W. J. Cai, S. E. Lohrenz, R. He, and C. S. Hopkinson, 2015: Large increase in dissolved inorganic carbon flux from the Mississippi River to Gulf of Mexico due to climatic and anthropogenic changes over the 21st century. Journal of Geophysical Research: Biogeosciences, 120(4), 724-736, doi: 10.1002/2014JG002761.

Ribas-Ribas, M., J. M. Hernández-Ayón, V. F. Camacho-Ibar, A. Cabello-Pasini, A. Mejia-Trejo, R. Durazo, S. Galindo-Bect, A. J. Souza, J. M. Forja, and A. Siqueiros-Valencia, 2011: Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja, California. Estuarine, Coastal and Shelf Science, 95(4), 367-376, doi: 10.1016/j.ecss.2011.09.017.

Saintilan, N., N. C. Wilson, K. Rogers, A. Rajkaran, and K. W. Krauss, 2014: Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology, 20(1), 147-157, doi: 10.1111/gcb.12341.

Salisbury, J., M. Green, C. Hunt, and J. Campbell, 2008: Coastal acidification by rivers: A threat to shellfish? Eos, Transactions American Geophysical Union, 89(50), 513-513, doi: 10.1029/2008eo500001.

Sallenger Jr, A. H., K. S. Doran, and P. A. Howd, 2012: Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nature Climate Change, 2, 884, doi: 10.1038/nclimate1597.

Sanderman, J., T. Hengl, G. Fiske, K. Solvik, M. F. Adame, L. Benson, J. J. Bukoski, P. Carnell, M. Cifuentes-Jara, D. Donato, C. Duncan, E. M. Eid, P. zu Ermgassen, C. J. E. Lewis, P. I. Macreadie, L. Glass, S. Gress, S. L. Jardine, T. G. Jones, E. N. Nsombo, M. M. Rahman, C. J. Sanders, M. Spalding, and E. Landis, 2018: A global map of mangrove forest soil carbon at 30 m spatial resolution. Environmental Research Letters, 13(5), 055002.

Sansone, F. J., T. M. Rust, and S. V. Smith, 1998: Methane distribution and cycling in Tomales Bay, California. Estuaries, 21(1), 66, doi: 10.2307/1352547.

Schäfer, K. V. R., R. Tripathee, F. Artigas, T. H. Morin, and G. Bohrer, 2014: Carbon dioxide fluxes of an urban tidal marsh in the Hudson-Raritan Estuary. Journal of Geophysical Research: Biogeosciences, 119(11), 2065-2081, doi: 10.1002/2014jg002703.

Schepers, L., M. Kirwan, G. Guntenspergen, and S. Temmerman, 2017: Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnology and Oceanography, 62(1), 137-150, doi: 10.1002/lno.10381.

Schlesinger, W. H., 2009: On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences USA, 106(1), 203-208, doi: 10.1073/pnas.0810193105.

Schubauer, J. P., and C. S. Hopkinson, 1984: Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnology and Oceanography, 29(5), 1052-1065, doi: 10.4319/lo.1984.29.5.1052.

Segarra, K. E. A., V. Samarkin, E. King, C. Meile, and S. B. Joye, 2013: Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith Creek, GA). Biogeochemistry, 115(1-3), 349-361, doi: 10.1007/s10533-013-9840-6.

Selmants, P. C., C. P. Giardina, J. D. Jacobi, and Z. Zhu, 2017: Baseline and Projected Future Carbon Storage and Carbon Fluxes in Ecosystems of Hawai‘i. U.S. Geological Survey Professional Paper 1834, 134 pp, doi: 10.3133/pp1834.

Shih, J. S., R. Alexander, R. A. Smith, E. W. Boyer, G. E. Schwarz, and S. Chung, 2010: An Initial Sparrow Model of Land Use and In-Stream Controls on Total Organic Carbon in Streams of the Conterminous United States. U.S. Geological Survey Open File Report 1276. [URL]

Smith, R. W., T. S. Bianchi, M. Allison, C. Savage, and V. Galy, 2015: High rates of organic carbon burial in fjord sediments ­globally. Nature Geoscience, 8(6), 450-453, doi: 10.1038/ngeo2421.

Smith, S. V., and J. T. Hollibaugh, 1997: Annual cycle and interannual variability of ecosystem metabolism in a temperate climate embayment. Ecological Monographs, 67(4), 509-533, doi: 10.1890/0012-9615(1997)067[0509:acaivo]2.0.co;2.

Son, S., M. Wang, and L. W. Harding, 2014: Satellite-measured net primary production in the Chesapeake Bay. Remote Sensing of Environment, 144, 109-119, doi: 10.1016/j.rse.2014.01.018.

Spalding, M., M. Kainuma, and L. Collins, 2010: World Atlas of Mangroves. Earthscan, 319 pp. [URL]

Steinberg, P. D., M. T. Brett, J. S. Bechtold, J. E. Richey, L. M. Porensky, and S. N. Smith, 2010: The influence of watershed characteristics on nitrogen export to and marine fate in Hood Canal, Washington, USA. Biogeochemistry, 106(3), 415-433, doi: 10.1007/s10533-010-9521-7.

Stets, E., and R. Striegl, 2012: Carbon export by rivers draining the conterminous United States. Inland Waters, 2(4), 177-184, doi: 10.5268/iw-2.4.510.

Swarzenski, C. M., T. W. Doyle, B. Fry, and T. G. Hargis, 2008: Biogeochemical response of organic-rich freshwater marshes in the Louisiana Delta Plain to chronic river water influx. Biogeochemistry, 90(1), 49-63, doi: 10.1007/s10533-008-9230-7.

TCEQ, 2017: Texas Commission on Environmental Quality. [URL]

Thilenius, J. F., 1990: Woody plant succession on earthquake-­uplifted coastal wetlands of the Copper River Delta, Alaska. Forest Ecology and Management, 33-34, 439-462, doi: 10.1016/0378-1127(90)90209-t.

Thom, R. M., 1992: Accretion rates of low intertidal salt marshes in the Pacific Northwest. Wetlands, 12(3), 147-156, doi: 10.1007/bf03160603.

Thorhaug, A., H. M. Poulos, J. Lopez-Portillo, T. C. W. Ku, and G. P. Berlyn, 2017: Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration. Science of the Total Environment, 605-606, 626-636, doi: 10.1016/j.scitotenv.2017.06.189.

Tian, H., W. Ren, J. Yang, B. Tao, W.-J. Cai, S. E. Lohrenz, C. S. Hopkinson, M. Liu, Q. Yang, C. Lu, B. Zhang, K. Banger, S. Pan, R. He, and Z. Xue, 2015: Climate extremes dominating seasonal and interannual variations in carbon export from the Mississippi River Basin. Global Biogeochemical Cycles, 29(9), 1333-1347, doi: 10.1002/2014gb005068.

Tian, X., B. Sohngen, J. B. Kim, S. Ohrel, and J. Cole, 2016: Global climate change impacts on forests and markets. Environmental Research Letters, 11(3), 035011, doi: 10.1088/1748-9326/11/3/035011.

Troche-Souza, C., M. T. Rodríguez-Zúñiga, S. Velázquez-Salazar, L. Valderrama-Landeros, E. Villeda-Chávez, A. Alcántara-Maya, B. Vázquez-Balderas, M. I. Cruz-López y R. Ressl, 2016: Manglares de México: Extensión, Distribución y Monitoreo (1970/1980 - 2015). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México. D. F., México.

Troxler, T. G., J. G. Barr, J. D. Fuentes, V. Engel, G. Anderson, C. Sanchez, D. Lagomasino, R. Price, and S. E. Davis, 2015: Component-specific dynamics of riverine mangrove CO2 efflux in the Florida Coastal Everglades. Agricultural and Forest Meteorology, 213, 273-282, doi: 10.1016/j.agrformet.2014.12.012.

U.S. EPA, 2016: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2014. U.S. Environmental Protection Agency. EPA 430-R-16-002. [URL]

U.S. EPA, 2017: Avoiding and Reducing Long-Term Risks of Climate Change: A Technical Report for the Fourth National Climate Assessment. U.S. Environmental Protection Agency. EPA 430-R-17-00.

USFWS NWI, 2017. U.S. Fish and Wildlife Service National Wetlands Inventory Product Summary. U.S. Fish and Wildlife Service. [URL]

USGS, 2018: U.S. Geological Survey Coastal Change Hazards Portal. U.S. Geological Survey. [URL]

USGS, 2017: U.S. Geological Survey Land Change Monitoring, Assessment, and Projection Initiative. U.S. Geological Survey. [URL]

Valderrama Landeros L. H., M. T. Rodríguez-Zúñiga, C. Troche Souza, S. Velázquez Salazar, E. Villeda Chávez, J. A. Alcántara Maya, B. Vázquez Balderas, M. I. Cruz López, and R. Ressl, 2017: Manglares de México: Actualización y exploración de los datos del sistema de monitoreo 1970/1980-2015. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. Ciudad de México.[URL]

van Dam, B. R., J. R. Crosswell, I. C. Anderson, and H. W. Paerl, 2018: Watershed‐scale drivers of air‐water CO2 exchanges in two lagoonal North Carolina (USA) estuaries. Journal of Geophysical Research: Biogeosciences, 123(1), 271-287, doi: 10.1002/2017JG004243.

van der Heide, T., E. H. van Nes, M. M. van Katwijk, H. Olff, and A. J. Smolders, 2011: Positive feedbacks in seagrass ecosystems: Evidence from large-scale empirical data. PLOS One, 6(1), e16504, doi: 10.1371/journal.pone.0016504.

von Biela, V. R., C. E. Zimmerman, B. R. Cohn, and J. M. Welker, 2012: Terrestrial and marine trophic pathways support young-of-year growth in a nearshore Arctic fish. Polar Biology, 36(1), 137-146, doi: 10.1007/s00300-012-1244-x.

Waldbusser, G. G., B. Hales, C. J. Langdon, B. A. Haley, P. Schrader, E. L. Brunner, M. W. Gray, C. A. Miller, and I. Gimenez, 2014: Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Climate Change, 5(3), 273-280, doi: 10.1038/nclimate2479.

Walling, D. E., and B. W. Webb, 1983: Patterns of sediment yield. In: Background to Palaeohydrology. A Perspective. pp. 69-100.

Wang, Z. A., and W.-J. Cai, 2004: Carbon dioxide degassing and inorganic carbon export from a marsh-dominated estuary (the Duplin River): A marsh CO2 pump. Limnology and Oceanography, 49(2), 341-354, doi: 10.4319/lo.2004.49.2.0341.

Wang, Z. A., K. D. Kroeger, N. K. Ganju, M. E. Gonneea, and S. N. Chu, 2016: Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnology and Oceanography, 61(5), 1916-1931, doi: 10.1002/lno.10347.

Ward, N. D., T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, 2017: Where carbon goes when water flows: Carbon cycling across the aquatic continuum. Frontiers in Marine Science, 4, doi: 10.3389/fmars.2017.00007.

Washington State Blue Ribbon Panel on Ocean Acidification, 2012: Ocean Acidification: From Knowledge to Action, Washington State’s Strategic Response. Publication no. 12-01-015. [H. Adelsman and L. W. Binder (eds.)]. Washington Department of Ecology, Olympia, Washington. [URL]

Watson, E. B., 2004: Changing elevation, accretion, and tidal marsh plant assemblages in a south San Francisco bay tidal marsh. Estuaries, 27(4), 684-698, doi: 10.1007/bf02907653.

Watson, E. B., C. Wigand, E. W. Davey, H. M. Andrews, J. Bishop, and K. B. Raposa, 2017: Wetland loss patterns and inundation­productivity relationships prognosticate widespread salt marsh loss for southern New England. Estuaries and Coasts, 40(3), 662-681, doi: 10.1007/s12237-016-0069-1.

Weston, N. B., S. C. Neubauer, D. J. Velinsky, and M. A. Vile, 2014: Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry, 120(1-3), 163-189, doi: 10.1007/s10533-014-9989-7.

Wheatcroft, R. A., M. A. Goñ i, J. A. Hatten, G. B. Pasternack, and J. A. Warrick, 2010: The role of effective discharge in the ocean delivery of particulate organic carbon by small, mountainous river systems. Limnology and Oceanography, 55(1), 161-171, doi: 10.4319/lo.2010.55.1.0161.

Whiting, G. J., and J. P. Chanton, 2001: Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B, 53(5), 521-528, doi: 10.1034/j.1600-0889.2001.530501.x.

Wilson, B. J., B. Mortazavi, and R. P. Kiene, 2015: Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry, 123(3), 329-347, doi: 10.1007/s10533-015-0085-4.

Wollast R., 1991: The coastal carbon cycle: Fluxes, sources and sinks. In: Ocean Margin Processes in Global Change. [R. F. C. Mantoura, J.-M. Martin, and R. Wollast (eds.)]. J. Wiley & Sons, Chichester, pp. 365–382.

Yao, H., and X. Hu, 2017: Responses of carbonate system and CO2 flux to extended drought and intense flooding in a semiarid subtropical estuary. Limnology and Oceanography, 62(S1), S112-S130, doi: 10.1002/lno.10646.

Ye, F., Y. J. Zhang, H. V. Wang, M. A. M. Friedrichs, I. D. Irby, E. Alteljevich, A. Valle-Levinson, Z. Wang, H. Huang, J. Shen, and J. Du, 2018: A 3D unstructured-grid model for Chesapeake Bay: Importance of bathymetry. Ocean Modelling, 127, 16-39, doi: 10.1016/j.ocemod.2018.05.002.

Ye, F., Y. J. Zhang, M. A. M. Friedrichs, H. V. Wang, I. D. Irby, J. Shen, and Z. Wang, 2016: A 3D, cross-scale, baroclinic model with implicit vertical transport for the upper Chesapeake Bay and its tributaries. Ocean Modelling, 107, 82-96, doi: 10.1016/j.ocemod.2016.10.004.

Zhang, J. Z., and C. J. Fischer, 2014: Carbon dynamics of Florida Bay: Spatiotemporal patterns and biological control. Environmental Science and Technology, 48(16), 9161-9169, doi: 10.1021/es500510z.

Zhang, K., B. Thapa, M. Ross, and D. Gann, 2016: Remote sensing of seasonal changes and disturbances in mangrove forest: A case study from South Florida. Ecosphere, 7(6), e01366, doi: 10.1002/ecs2.1366.


See Full Chapter & References