Lead Authors:
Kate Lajtha, Oregon State University
Vanessa L. Bailey, Pacific Northwest National Laboratory
Contributing Authors:
Karis McFarlane, Lawrence Livermore National Laboratory
Keith Paustian, Colorado State University
Dominique Bachelet, Oregon State University
Rose Abramoff, Lawrence Berkeley National Laboratory
Denis Angers, Agriculture and Agri-Food Canada
Sharon A. Billings, University of Kansas
Darrel Cerkowniak, Agriculture and Agri-Food Canada
Yannis G. Dialynas, University of Cyprus (formerly at Georgia Institute of Technology)
Adrien Finzi, Boston University
Nancy H. F. French, Michigan Technological University
Serita Frey, University of New Hampshire
Noel P. Gurwick, U.S. Agency for International Development
Jennifer Harden, U.S. Geological Survey and Stanford University
Jane M. F. Johnson, USDA Agricultural Research Service
Kristofer Johnson, USDA Forest Service
Johannes Lehmann, Cornell University
Shuguang Liu, Central South University of Forestry and Technology
Brian McConkey, Agriculture and AgriFood Canada
Umakant Mishra, Argonne National Laboratory
Scott Ollinger, University of New Hampshire
David Paré, Natural Resources Canada, Canadian Forest Service
Fernando Paz Pellat, Colegio de Postgraduados Montecillo
Daniel deB. Richter, Duke University
Sean M. Schaeffer, University of Tennessee
Joshua Schimel, University of California, Santa Barbara
Cindy Shaw, Natural Resources Canada, Canadian Forest Service
Jim Tang, Marine Biological Laboratory
Katherine Todd-Brown, Pacific Northwest National Laboratory
Carl Trettin, USDA Forest Service
Mark Waldrop, U.S. Geological Survey
Thea Whitman, University of Wisconsin, Madison
Kimberly Wickland, U.S. Geological Survey
Science Lead:
Melanie A. Mayes, Oak Ridge National Laboratory
Review Editor:
Francesca Cotrufo, Colorado State University
Federal Liaison:
Nancy Cavallaro, USDA National Institute of Food and Agriculture

Soils

REFERENCES

Abramoff, R., X. Xu, M. Hartman, S. O’Brien, W. Feng, E. Davidson, A. Finzi, D. Moorhead, J. Schimel, M. Torn, and M. A. Mayes, 2018: The millennial model: In search of measurable pools and transformations for modeling soil carbon in the new century. Biogeochemistry, 137(1), 51-71, doi: 10.1007/s10533-017-0409-7.

Agriculture and Agri-Food Canada, 2016: Soil Organic Matter Indicator. Agriculture and Agri-Food Canada; Government of Canada. [URL]

Alcantara, V., A. Don, R. Well, and R. Nieder, 2016: Deep ploughing increases agricultural soil organic matter stocks. Global Change Biology, 22(8), 2939-2956, doi: 10.1111/gcb.13289.

Angers, D. A., and N. S. Eriksen-Hamel, 2008: Full-inversion tillage and organic carbon distribution in soil profiles: A meta-analysis. Soil Science Society of America Journal, 72(5), 1370, doi: 10.2136/sssaj2007.0342.

Aspiras, R. B., O. N. Allen, R. F. Harris, and G. Chesters, 1971: The role of microorganisms in the stabilization of soil aggregates. Soil Biology and Biochemistry, 3(4), 347-353, doi: 10.1016/0038-0717(71)90045-9.

Averill, C., and C. V. Hawkes, 2016: Ectomycorrhizal fungi slow soil carbon cycling. Ecology Letters, 19(8), 937-947, doi: 10.1111/ele.12631.

Averill, C., B. L. Turner, and A. C. Finzi, 2014: Mycorrhiza-­mediated competition between plants and decomposers drives soil carbon storage. Nature, 505(7484), 543-545, doi: 10.1038/nature12901.

Barcena, T. G., L. P. Kiaer, L. Vesterdal, H. M. Stefansdottir, P. Gundersen, and B. D. Sigurdsson, 2014: Soil carbon stock change following afforestation in northern Europe: A meta-analysis. Global Change Biology, 20(8), 2393-2405, doi: 10.1111/gcb.12576.

Batjes, N. H., 1996: Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 47(2), 151-163, doi: 10.1111/j.1365-2389.1996.tb01386.x.

Batjes, N. H., 2016: Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma, 269, 61-68, doi: 10.1016/j.­geoderma.2016.01.034.

Beaudoin, A., P. Y. Bernier, L. Guindon, P. Villemaire, X. J. Guo, G. Stinson, T. Bergeron, S. Magnussen, and R. J. Hall, 2014: Mapping attributes of Canada’s forests at moderate resolution through kNN and MODIS imagery. Canadian Journal of Forest Research, 44(5), 521-532, doi: 10.1139/cjfr-2013-0401.

Berhe, A. A., J. Harte, J. W. Harden, and M. S. Torn, 2007: The significance of the erosion-induced terrestrial carbon sink. BioScience, 57(4), 337, doi: 10.1641/b570408.

Bernal, B., D. C. McKinley, B. A. Hungate, P. M. White, T. J. Mozdzer, and J. P. Megonigal, 2016: Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs. Soil Biology and Biochemistry, 98, 85-94, doi: 10.1016/j.soilbio.2016.04.007.

Bever, J. D., I. A. Dickie, E. Facelli, J. M. Facelli, J. Klironomos, M. Moora, M. C. Rillig, W. D. Stock, M. Tibbett, and M. Zobel, 2010: Rooting theories of plant community ecology in microbial interactions. Trends in Ecology and Evolution, 25(8), 468-478, doi: 10.1016/j.tree.2010.05.004.

Billings, S. A., and F. Ballantyne, 2013: How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Global Change Biology, 19(1), 90-102, doi: 10.1111/gcb.12029.

Billings, S. A., and S. E. Ziegler, 2008: Altered patterns of soil carbon substrate usage and heterotrophic respiration in a pine forest with elevated CO2 and N fertilization. Global Change Biology, 14(5), 1025-1036, doi: 10.1111/j.1365-2486.2008.01562.x.

Billings, S. A., R. W. Buddemeier, D. deB. Richter, K. Van Oost, and G. Bohling, 2010: A simple method for estimating the influence of eroding soil profiles on atmospheric CO2. Global Biogeochemical Cycles, 24(2), GB2001, doi: 10.1029/2009gb003560.

Bliss, N. B., and J. Maursetter, 2010: Soil organic carbon stocks in Alaska estimated with spatial and pedon data. Soil Science Society of America Journal, 74(2), 565, doi: 10.2136/sssaj2008.0404.

Bliss, N. B., S. W. Waltman, L. T. West, A. Neale, and M. Mehaffey, 2014: Distribution of soil organic carbon in the conterminous United States. In: Soil Carbon. Progress in Soil Science. [A. Hartemink and K. McSweeney (eds.)]. Springer, Cham, pp. 85-93.

Bolaños González, M. A., F. Paz Pellat, C. O. Cruz Gaistardo, J. A. Argumedo Espinoza, V. M. Romero Benítez, and J. C. de la Cruz Cabrera, 2016: Mapa de erosión de los suelos de México y posibles implicaciones en el almacenamiento de carbono orgánico del suelo. Terra Latinoam, 34(3), 271–288.

Bolinder, M. A., H. H. Janzen, E. G. Gregorich, D. A. Angers, and A. J. VandenBygaart, 2007: An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agriculture, Ecosystems and Environment, 118(1-4), 29-42, doi: 10.1016/j.agee.2006.05.013.

Bolker, B. M., S. W. Pacala, and W. J. Parton, 1998: Linear analysis of soil decomposition: Insights from the CENTURY model. Ecological Applications, 8(2), 425-439, doi: 10.1890/­1051-0761(1998)008[0425:LAOSDI]2.0.CO;2.

Bona, K. A., C. H. Shaw, J. W. Fyles, and W. A. Kurz, 2016: Modelling moss-derived carbon in upland black spruce forests. Canadian Journal of Forest Research, 46(4), 520-534, doi: 10.1139/cjfr-2015-0512.

Bona, K. A., J. W. Fyles, C. Shaw, and W. A. Kurz, 2013: Are mosses required to accurately predict upland black spruce forest soil carbon in national-scale forest C accounting models? Ecosystems, 16(6), 1071-1086, doi: 10.1007/s10021-013-9668-x.

Bond-Lamberty, B., and A. Thomson, 2010: Temperature-­associated increases in the global soil respiration record. Nature, 464(7288), 579-582, doi: 10.1038/nature08930.

Bond-Lamberty, B., C. Wang, and S. T. Gower, 2004: A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 10(10), 1756-1766, doi: 10.1111/j.1365-2486.2004.00816.x.

Bradford, M. A., W. R. Wieder, G. B. Bonan, N. Fierer, P. A. Raymond, and T. W. Crowther, 2016: Managing uncertainty in soil carbon feedbacks to climate change. Nature Climate Change, 6(8), 751-758, doi: 10.1038/Nclimate3071.

Bridgham, S. D., J. Pastor, B. Dewey, J. F. Weltzin, and K. Updegraff, 2008: Rapid carbon response of peatlands to climate change. Ecology, 89(11), 3041-3048, doi: 10.1890/08-0279.1.

Brzostek, E. R., D. Dragoni, Z. A. Brown, and R. P. Phillips, 2015: Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest. New Phytologist, 206(4), 1274-1282, doi: 10.1111/nph.13303.

Buchholz, T., A. J. Friedland, C. E. Hornig, W. S. Keeton, G. Zanchi, and J. Nunery, 2014: Mineral soil carbon fluxes in forests and implications for carbon balance assessments. GCB Bioenergy, 6(4), 305-311, doi: 10.1111/gcbb.12044.

Burke, I. C., C. M. Yonker, W. J. Parton, C. V. Cole, D. S. Schimel, and K. Flach, 1989: Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Science Society of America Journal, 53(3), 800-805, doi: 10.2136/sssaj1989.03615995005300030029x.

Cameron, E. K., C. H. Shaw, E. M. Bayne, W. A. Kurz, and S. J. Kull, 2015: Modelling interacting effects of invasive earthworms and wildfire on forest floor carbon storage in the boreal forest. Soil Biology and Biochemistry, 88, 189-196, doi: 10.1016/j.soilbio.2015.05.020.

Campo, J. F., O. A. García, S. Navarrete, and C. Siebe, 2016: Almacenes y dinámica del carbono organico en ecosistemas forestales tropicales de México. Terra Latinoamericana, 34(1), 31–38.

Chambers, A., R. Lal, and K. Paustian, 2016: Soil carbon sequestration potential of US croplands and grasslands: Implementing the 4 per thousand initiative. Journal of Soil and Water Conservation, 71(3), 68A-74A, doi: 10.2489/jswc.71.3.68A.

Chapin, F. S., A. D. McGuire, J. Randerson, R. Pielke, D. Baldocchi, S. E. Hobbie, N. Roulet, W. Eugster, E. Kasischke, E. B. Rastetter, S. A. Zimov, and S. W. Running, 2000: Arctic and boreal ecosystems of western North America as components of the climate system. Global Change Biology, 6(S1), 211-223, doi: 10.1046/j.1365-2486.2000.06022.x.

Chapin, F. S., A. D. McGuire, R. W. Ruess, T. N. Hollingsworth, M. C. Mack, J. F. Johnstone, E. S. Kasischke, E. S. Euskirchen, J. B. Jones, M. T. Jorgenson, K. Kielland, G. P. Kofinas, M. R. Turetsky, J. Yarie, A. H. Lloyd, and D. L. Taylor, 2010: Resilience of Alaska’s boreal forest to climatic change. Canadian Journal of Forest Research, 40(7), 1360-1370, doi: 10.1139/x10-074.

Chen, L., P. Smith, and Y. Yang, 2015: How has soil carbon stock changed over recent decades? Global Change Biology, 21(9), 3197-3199, doi: 10.1111/gcb.12992.

Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell, A. Chhabra, R. DeFries, J. Galloway, M. Heimann, C. Jones, C. Le Quéré, R. B. Myneni, S. Piao, and P. Thornton, 2013: Carbon and other biogeochemical cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK, and New York, NY, USA, pp. 465-570.

Clemente, J. S., A. J. Simpson, and M. J. Simpson, 2011: Association of specific organic matter compounds in size fractions of soils under different environmental controls. Organic Geochemistry, 42(10), 1169-1180, doi: 10.1016/j.orggeochem.2011.08.010.

Cohen, J., J. A. Screen, J. C. Furtado, M. Barlow, D. Whittleston, D. Coumou, J. Francis, K. Dethloff, D. Entekhabi, J. Overland, and J. Jones, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627-637, doi: 10.1038/Ngeo2234.

Coleman, D. C., and D. H. Wall, 2015: Soil fauna. In: Occurrence, Biodiversity, and Roles in Ecosystem Function, Soil Microbiology, Ecology and Biochemistry, 4th ed. [E. A. Paul (ed.)]. Academic Press, pp. 111-149.

Commane, R., J. Lindaas, J. Benmergui, K. A. Luus, R. Y. Chang, B. C. Daube, E. S. Euskirchen, J. M. Henderson, A. Karion, J. B. Miller, S. M. Miller, N. C. Parazoo, J. T. Randerson, C. Sweeney, P. Tans, K. Thoning, S. Veraverbeke, C. E. Miller, and S. C. Wofsy, 2017: Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proceedings of the National Academy of Sciences USA, 114(21), 5361-5366, doi: 10.1073/pnas.1618567114.

CONAFOR, 2010: Evaluación de los Recursos Forestales Mundiales 2010 Informe Nacional. Rome, Italy.

Cotrufo, M. F., M. D. Wallenstein, C. M. Boot, K. Denef, and E. Paul, 2013: The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988-995, doi: 10.1111/gcb.12113.

Courtier-Murias, D., A. J. Simpson, C. Marzadori, G. Baldoni, C. Ciavatta, J. M. Fernandez, E. G. Lopez-De-Sa, and C. Plaza, 2013: Unraveling the long-term stabilization mechanisms of organic materials in soils by physical fractionation and NMR spectroscopy. Agriculture, Ecosystems and Environment, 171, 9-18, doi: 10.1016/j.agee.2013.03.010.

Cox, T. S., J. D. Glover, D. L. Van Tassel, C. M. Cox, and L. R. DeHaan, 2006: Prospects for developing perennial grain crops. BioScience, 56(8), 649, doi: 10.1641/0006-3568(2006)56[649:pfdpgc]2.0.co;2.

Crow, S. E., K. Lajtha, R. D. Bowden, Y. Yano, J. B. Brant, B. A. Caldwell, and E. W. Sulzman, 2009: Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. Forest Ecology and Management, 258(10), 2224-2232, doi: 10.1016/j.foreco.2009.01.014.

Crowther, T. W., K. E. Todd-Brown, C. W. Rowe, W. R. Wieder, J. C. Carey, M. B. Machmuller, B. L. Snoek, S. Fang, G. Zhou, S. D. Allison, J. M. Blair, S. D. Bridgham, A. J. Burton, Y. Carrillo, P. B. Reich, J. S. Clark, A. T. Classen, F. A. Dijkstra, B. Elberling, B. A. Emmett, M. Estiarte, S. D. Frey, J. Guo, J. Harte, L. Jiang, B. R. Johnson, G. Kroel-Dulay, K. S. Larsen, H. Laudon, J. M. Lavallee, Y. Luo, M. Lupascu, L. N. Ma, S. Marhan, A. Michelsen, J. Mohan, S. Niu, E. Pendall, J. Penuelas, L. Pfeifer-Meister, C. Poll, S. Reinsch, L. L. Reynolds, I. K. Schmidt, S. Sistla, N. W. Sokol, P. H. Templer, K. K. Treseder, J. M. Welker, and M. A. Bradford, 2016: Quantifying global soil carbon losses in response to warming. Nature, 540(7631), 104-108, doi: 10.1038/nature20150.

Davidson, E. A., and I. A. Janssens, 2006: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173, doi: 10.1038/nature04514.

de Jong, B., C. Anaya, O. Masera, M. Olguín, F. Paz Pellat, J. Etchevers, R. D. Martínez, G. Guerrero, and C. Balbontín, 2010: Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. Forest Ecology and Management, 260(10), 1689-1701, doi: 10.1016/j.foreco.2010.08.011.

de Vries, F. T., E. Thebault, M. Liiri, K. Birkhofer, M. A. Tsiafouli, L. Bjornlund, H. Bracht Jorgensen, M. V. Brady, S. Christensen, P. C. de Ruiter, T. d’Hertefeldt, J. Frouz, K. Hedlund, L. Hemerik, W. H. Hol, S. Hotes, S. R. Mortimer, H. Setala, S. P. Sgardelis, K. Uteseny, W. H. van der Putten, V. Wolters, and R. D. Bardgett, 2013: Soil food web properties explain ecosystem services across European land use systems. Proceedings of the National Academy of Sciences USA, 110(35), 14296-14301, doi: 10.1073/pnas.1305198110.

Dean, C., J. B. Kirkpatrick, and A. J. Friedland, 2017: Conventional intensive logging promotes loss of organic carbon from the mineral soil. Global Change Biology, 23(1), 1-11, doi: 10.1111/gcb.13387.

Dessureault-Rompre, J., B. Nowack, R. Schulin, and J. Luster, 2007: Spatial and temporal variation in organic acid anion exudation and nutrient anion uptake in the rhizosphere of Lupinus albus L. Plant and Soil, 301(1-2), 123-134, doi: 10.1007/s11104-007-9427-x.

Dialynas, Y. G., S. Bastola, R. L. Bras, S. A. Billings, D. Markewitz, and D. d. Richter, 2016: Topographic variability and the influence of soil erosion on the carbon cycle. Global Biogeochemical Cycles, 30(5), 644-660, doi: 10.1002/2015gb005302.

Dietze, M. C., S. P. Serbin, C. Davidson, A. R. Desai, X. H. Feng, R. Kelly, R. Kooper, D. LeBauer, J. Mantooth, K. McHenry, and D. Wang, 2014: A quantitative assessment of a terrestrial biosphere model’s data needs across North American biomes. Journal of Geophysical Research: Biogeosciences, 119(3), 286-300, doi: 10.1002/2013jg002392.

Diochon, A., L. Kellman, and H. Beltrami, 2009: Looking deeper: An investigation of soil carbon losses following harvesting from a managed northeastern red spruce (Picea rubens Sarg.) forest chronosequence. Forest Ecology and Management, 257(2), 413-420, doi: 10.1016/j.foreco.2008.09.015.

Dise, N. B., 2009: Environmental science. Peatland response to global change. Science, 326(5954), 810-811, doi: 10.1126/science.1174268.

Domke, G. M., C. H. Perry, B. F. Walters, L. E. Nave, C. W. Woodall, and C. W. Swanston, 2017: Toward inventory-based estimates of soil organic carbon in forests of the United States. Ecological Applications, 27(4), 1223-1235, doi: 10.1002/eap.1516.

Don, A., J. Schumacher, and A. Freibauer, 2011: Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Global Change Biology, 17(4), 1658-1670, doi: 10.1111/j.1365-2486.2010.02336.x.

ECCC 2015: National Inventory Report, 1990–2013: Greenhouse Gas Sources and Sinks in Canada. Environment and Climate Change Canada. [URL]

Eglin, T., P. Ciais, S. L. Piao, P. Barre, V. Bellassen, P. Cadule, C. Chenu, T. Gasser, C. Koven, M. Reichstein, and P. Smith, 2010: Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus B: Chemical and Physical Meteorology, 62(5), 700-718, doi: 10.1111/j.1600-0889.2010.00499.x.

Elser, J. J., M. E. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin, and J. E. Smith, 2007: Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10(12), 1135-1142, doi: 10.1111/j.1461-0248.2007.01113.x.

Fang, H. J., S. L. Cheng, X. P. Zhang, A. Z. Liang, X. M. Yang, and C. F. Drury, 2006: Impact of soil redistribution in a sloping landscape on carbon sequestration in northeast China. Land Degradation and Development, 17(1), 89-96, doi: 10.1002/ldr.697.

FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (Version 1.2). Food and Agriculture Organization of the United Nations, Rome, Italy, and International Institute for Applied Systems Analysis, Laxenburg, Austria.

Fierer, N., M. S. Strickland, D. Liptzin, M. A. Bradford, and C. C. Cleveland, 2009: Global patterns in belowground communities. Ecology Letters, 12(11), 1238-1249, doi: 10.1111/j.1461-0248.2009.01360.x.

Finlay, R. D., and D. J. Read, 1986: The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytologist, 103(1), 157-165, doi: 10.1111/j.1469-8137.1986.tb00604.x.

Follett, R. F., S. Mooney, J. A. Morgan, K. Paustian, L. H. Allen Jr, S. Archibeque, S. J. Del Grosso, J. D. Derner, F. Dijkstra, A. J. Franzluebbers, L. Kurkalova, B. McCarl, S. Ogle, W. Parton, J. Petersen, G. P. Robertson, M. Schoeneberger, T. West, and J. Williams, 2011. Carbon Sequestration and Greenhouse Gas Fluxes in Agriculture: Challenges and Opportunities. Council for Agricultural Science and Technology, Issue Paper, 112 pp.

Frey, S. D., S. Ollinger, K. Nadelhoffer, R. Bowden, E. Brzostek, A. Burton, B. A. Caldwell, S. Crow, C. L. Goodale, A. S. Grandy, A. Finzi, M. G. Kramer, K. Lajtha, J. LeMoine, M. Martin, W. H. McDowell, R. Minocha, J. J. Sadowsky, P. H. Templer, and K. Wickings, 2014: Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests. Biogeochemistry, 121(2), 305-316, doi: 10.1007/s10533-014-0004-0.

Friedlingstein, P., M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, and R. Knutti, 2014: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. Journal of Climate, 27(2), 511-526, doi: 10.1175/jcli-d-12-00579.1.

Georgiou, K., C. D. Koven, W. J. Riley, and M. S. Torn, 2015: Toward improved model structures for analyzing priming: Potential pitfalls of using bulk turnover time. Global Change Biology, 21(12), 4298-4302, doi: 10.1111/gcb.13039.

Geyer, K. M., E. Kyker-Snowman, A. S. Grandy, and S. D. Frey, 2016: Microbial carbon use efficiency: Accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry, 127(2-3), 173-188, doi: 10.1007/s10533-016-0191-y.

Giardina, C. P., C. M. Litton, S. E. Crow, and G. P. Asner, 2014: Warming-related increases in soil CO2 efflux are explained by increased below-ground carbon flux. Nature Climate Change, 4(9), 822-827, doi: 10.1038/nclimate2322.

Gilman, E. L., J. Ellison, N. C. Duke, and C. Field, 2008: Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany, 89(2), 237-250, doi: 10.1016/j.aquabot.2007.12.009.

Godbold, D. L., M. R. Hoosbeek, M. Lukac, M. F. Cotrufo, I. A. Janssens, R. Ceulemans, A. Polle, E. J. Velthorst, G. Scarascia-
Mugnozza, P. De Angelis, F. Miglietta, and A. Peressotti, 2006: Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant and Soil, 281(1-2), 15-24, doi: 10.1007/s11104-005-3701-6.

Gottschalk, P., J. U. Smith, M. Wattenbach, J. Bellarby, E. Stehfest, N. Arnell, T. J. Osborn, C. Jones, and P. Smith, 2012: How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosciences, 9(8), 3151-3171, doi: 10.5194/bg-9-3151-2012.

Govers, G. R., K. Merckx, K. Van Oost, and B. van Wesemael, 2013: Managing Soil Organic Carbon for Global Benefits: A STAP Technical Report. Global Environmental Facility, Washington, DC.

Granath, G., P. A. Moore, M. C. Lukenbach, and J. M. Waddington, 2016: Mitigating wildfire carbon loss in managed northern peatlands through restoration. Scientific Reports, 6, 28498, doi: 10.1038/srep28498.

Grosse, G., J. Harden, M. Turetsky, A. D. McGuire, P. Camill, C. Tarnocai, S. Frolking, E. A. G. Schuur, T. Jorgenson, S. Marchenko, V. Romanovsky, K. P. Wickland, N. French, M. Waldrop, L. Bourgeau-Chavez, and R. G. Striegl, 2011: Vulnerability of high-latitude soil organic carbon in North America to disturbance. Journal of Geophysical Research, 116, doi: 10.1029/2010jg001507.

Guenet, B., S. Juarez, G. Bardoux, L. Abbadie, and C. Chenu, 2012: Evidence that stable C is as vulnerable to priming effect as is more labile C in soil. Soil Biology and Biochemistry, 52, 43-48, doi: 10.1016/j.soilbio.2012.04.001.

Guo, L. B., and R. M. Gifford, 2002: Soil carbon stocks and land use change: A meta analysis. Global Change Biology, 8(4), 345-360, doi: 10.1046/j.1354-1013.2002.00486.x.

Guo, Y., R. Amundson, P. Gong, and Q. Yu, 2006: Quantity and spatial variability of soil carbon in the conterminous United States. Soil Science Society of America Journal, 70(2), 590-600, doi: 10.2136/sssaj2005.0162.

Hagedorn, F., D. Spinnler, and R. Siegwolf, 2003: Increased N deposition retards mineralization of old soil organic matter. Soil Biology and Biochemistry, 35(12), 1683-1692, doi: 10.1016/j.soilbio.2003.08.015.

Hall, S. J., G. McNicol, T. Natake, and W. L. Silver, 2015a: Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: Insights from paired 14C analysis. Biogeosciences, 12(8), 2471-2487, doi: 10.5194/bg-12-2471-2015.

Hall, S. J., W. L. Silver, V. I. Timokhin, and K. E. Hammel, 2015b: Lignin decomposition is sustained under fluctuating redox conditions in humid tropical forest soils. Global Change Biology, doi: 10.1111/gcb.12908.

Hanson, P. J., N. T. Edwards, C. T. Garten, and J. A. Andrews, 2000: Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 48(1), 115-146, doi: 10.1023/a:1006244819642.

Hararuk, O., J. Y. Xia, and Y. Q. Luo, 2014: Evaluation and improvement of a global land model against soil carbon data using a Bayesian Markov chain Monte Carlo method. Journal of Geophysical Research: Biogeosciences, 119(3), 403-417, doi: 10.1002/2013jg002535.

Harden, J. W., J. M. Sharpe, W. J. Parton, D. S. Ojima, T. L. Fries, T. G. Huntington, and S. M. Dabney, 1999: Dynamic replacement and loss of soil carbon on eroding cropland. Global Biogeochemical Cycles, 13(4), 885-901, doi: 10.1029/1999gb900061.

Harmon, M. E., B. Bond-Lamberty, J. W. Tang, and R. Vargas, 2011: Heterotrophic respiration in disturbed forests: A review with examples from North America. Journal of Geophysical Research: Biogeosciences, 116, doi: 10.1029/2010jg001495.

Hashimoto, S., N. Carvalhais, A. Ito, M. Migliavacca, K. Nishina, and M. Reichstein, 2015: Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences, 12(13), 4121-4132, doi: 10.5194/bg-12-4121-2015.

Haynes, B. E., and S. T. Gower, 1995: Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology, 15(5), 317-325, doi: 10.1093/treephys/15.5.317.

Hazlett, P. W., D. M. Morris, and R. L. Fleming, 2014: Effects of biomass removals on site carbon and nutrients and jack pine growth in boreal forests. Soil Science Society of America Journal, 78, S183-S195, doi: 10.2136/sssaj2013.08.0372nafsc.

He, Y., S. E. Trumbore, M. S. Torn, J. W. Harden, L. J. Vaughn, S. D. Allison, and J. T. Randerson, 2016: Radiocarbon constraints imply reduced carbon uptake by soils during the 21st century. Science, 353(6306), 1419-1424, doi: 10.1126/science.aad4273.

Heckman, K., H. Throckmorton, C. Clingensmith, F. J. G. Vila, W. R. Horwath, H. Knicker, and C. Rasmussen, 2014: Factors affecting the molecular structure and mean residence time of occluded organics in a lithosequence of soils under ponderosa pine. Soil Biology and Biochemistry, 77, 1-11, doi: 10.1016/j.soilbio.2014.05.028.

Heimann, M., and M. Reichstein, 2008: Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature, 451(7176), 289-292, doi: 10.1038/nature06591.

Hengl, T., J. M. de Jesus, R. A. MacMillan, N. H. Batjes, G. B. Heuvelink, E. Ribeiro, A. Samuel-Rosa, B. Kempen, J. G. Leenaars, M. G. Walsh, and M. R. Gonzalez, 2014: SoilGrids1km – Global soil information based on automated mapping. PLOS One, 9(8), e105992, doi: 10.1371/journal.pone.0105992.

Hermosilla, T., M. A. Wulder, J. C. White, N. C. Coops, G. W. Hobart, and L. B. Campbell, 2016: Mass data processing of time series Landsat imagery: Pixels to data products for forest monitoring. International Journal of Digital Earth, 9(11), 1035-1054, doi: 10.1080/17538947.2016.1187673.

Herrera Silveira, J. A., A. C. Rico, E. Pech, M. Pech, J. R. Ramírez, and C. T. Hernández, 2016: Dinámica del carbono (almacenes y flujos) en manglares de Mexico. Terra Latinoam, 34(1), 61-72.

Hicks Pries, C. E., E. A. G. Schuur, S. M. Natali, and K. G. Crummer, 2015: Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra. Nature Climate Change, 6, 214-218, doi: 10.1038/nclimate2830.

Hirsch, P. R., A. J. Miller, and P. G. Dennis, 2013: Do root exudates exert more influence on rhizosphere bacterial community structure than other rhizodeposits? In: Molecular Microbial Ecology of the Rhizosphere. [F. J. de Bruijn (ed.)]. John Wiley & Sons, Inc., Hoboken, NJ, 229-242 pp.

Hu, Y., and N. J. Kuhn, 2014: Aggregates reduce transport distance of soil organic carbon: Are our balances correct? Biogeosciences Discussions, 11(6), 8829-8859, doi: 10.5194/bgd-11-8829-2014.

Huang, Y., X. Lu, Z. Shi, D. Lawrence, C. D. Koven, J. Xia, Z. Du, E. Kluzek, and Y. Luo, 2018: Matrix approach to land carbon cycle modeling: A case study with the Community Land Model. Global Change Biology, 24(3), 1394-1404, doi: 10.1111/gcb.13948.

Huber-Sannwald, E., F. T. Maestre, J. E. Herrick, and J. F. Reynolds, 2006: Ecohydrological. Feedbacks and linkages associated with land degradation: A case study from Mexico. Hydrological Processes, 20(15), 3395-3411, doi: 10.1002/hyp.6337.

Hugelius, G., J. Strauss, S. Zubrzycki, J. W. Harden, E. A. G. Schuur, C. L. Ping, L. Schirrmeister, G. Grosse, G. J. Michaelson, C. D. Koven, J. A. O’Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry, 2014: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573-6593, doi: 10.5194/bg-11-6573-2014.

Hutchinson, J. J., C. A. Campbell, and R. L. Desjardins, 2007: Some perspectives on carbon sequestration in agriculture. Agricultural and Forest Meteorology, 142(2-4), 288-302, doi: 10.1016/j.agrformet.2006.03.030.

Hyvonen, R., G. I. Agren, S. Linder, T. Persson, M. F. Cotrufo, A. Ekblad, M. Freeman, A. Grelle, I. A. Janssens, P. G. Jarvis, S. Kellomaki, A. Lindroth, D. Loustau, T. Lundmark, R. J. Norby, R. Oren, K. Pilegaard, M. G. Ryan, B. D. Sigurdsson, M. Stromgren, M. van Oijen, and G. Wallin, 2007: The likely impact of elevated CO2, nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: A literature review. New Phytologist, 173(3), 463-480, doi: 10.1111/j.1469-8137.2007.01967.x.

IPCC, 2000: Land Use, Land-Use Change and Forestry. [R. T. Watson, I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo, and D. J. Dokken (eds.)]. Cambridge University Press, Cambridge, UK.

Ise, T., A. L. Dunn, S. C. Wofsy, and P. R. Moorcroft, 2008: High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience, 1(11), 763-766, doi: 10.1038/ngeo331.

Iversen, C. M., J. Ledford, and R. J. Norby, 2008: CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytologist, 179(3), 837-847, doi: 10.1111/j.1469-8137. ­2008.02516.x.

Jandl, R., M. Lindner, L. Vesterdal, B. Bauwens, R. Baritz, F. Hagedorn, D. W. Johnson, K. Minkkinen, and K. A. Byrne, 2007: How strongly can forest management influence soil carbon sequestration? Geoderma, 137(3-4), 253-268, doi: 10.1016/j.geoderma.2006.09.003.

Janssens, I. A., and S. Luyssaert, 2009: Carbon cycle: Nitrogen’s carbon bonus. Nature Geoscience, 2(5), 318-319, doi: 10.1038/ngeo505.

Janssens, I. A., W. Dieleman, S. Luyssaert, J. A. Subke, M. Reichstein, R. Ceulemans, P. Ciais, A. J. Dolman, J. Grace, G. Matteucci, D. Papale, S. L. Piao, E. D. Schulze, J. Tang, and B. E. Law, 2010: Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3(5), 315-322, doi: 10.1038/ngeo844.

Jastrow, J. D., J. E. Amonette, and V. L. Bailey, 2006: Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change, 80(1-2), 5-23, doi: 10.1007/s10584-006-9178-3.

Jastrow, J. D., R. M. Miller, and T. W. Boutton, 1996: Carbon dynamics of aggregate-associated organic matter estimated by ­carbon-13 natural abundance. Soil Science Society of America Journal, 60(3), 801, doi: 10.2136/sssaj1996.03615995006000030017x.

Jenerette, G. D., and R. Lal, 2007: Modeled carbon sequestration variation in a linked erosion–deposition system. Ecological Modelling, 200(1-2), 207-216, doi: 10.1016/j.ecolmodel.2006.07.027.

Jenkinson, D. S., 1977: Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C labelled ryegrass decomposing under field conditions. Journal of Soil Science, 28(3), 424-434, doi: 10.1111/j.1365-2389.1977.tb02250.x.

Jenny, H., 1941: Factors of Soil Formation: A System of Quantitative Pedology. McGraw Hill, 261 pp.

Jobbágy, E. G., and R. B. Jackson, 2000: The vertical distri-
bution of soil organic carbon and its relation to climate andvegetation. Ecological Applications, 10(2), 423-436, doi: 10.1890/1051-0761(2000)010[0423:tvdoso]2.0.co;2.

Johnson, D. W., and P. S. Curtis, 2001: Effects of forest management on soil C and N storage: Meta analysis. Forest Ecology and Management, 140(2-3), 227-238, doi: 10.1016/S0378-1127(00)00282-6.

Johnson, J. M. F., R. R. Allmaras, and D. C. Reicosky, 2006: Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agronomy Journal, 98(3), 622-636, doi: 10.2134/agronj2005.0179.

Johnson, K. D., J. W. Harden, A. D. McGuire, M. Clark, F. M. Yuan, and A. O. Finley, 2013: Permafrost and organic layer interactions over a climate gradient in a discontinuous permafrost zone. Environmental Research Letters, 8(3), doi: 10.1088/1748-9326/8/3/035028.

Jones, D. L., 1998: Organic acids in the rhizosphere — a critical review. Plant and Soil, 205(1), 25-44, doi: 10.1023/a:1004356007312.

Jones, M. C., J. Harden, J. O’Donnell, K. Manies, T. Jorgenson, C. Treat, and S. Ewing, 2017: Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Global Change Biology, 23(3), 1109-1127, doi: 10.1111/gcb.13403.

Jorgenson, M. T., C. H. Racine, J. C. Walters, and T. E. Osterkamp, 2001: Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Climatic Change, 48(4), 551-579, doi: 10.1023/a:1005667424292.

Jorgenson, M. T., V. Romanovsky, J. Harden, Y. Shur, J. O’Donnell, E. A. G. Schuur, M. Kanevskiy, and S. Marchenko, 2010: Resilience and vulnerability of permafrost to climate change. Canadian Journal of Forest Research, 40(7), 1219-1236, doi: 10.1139/x10-060.

Kaiser, C., H. Meyer, C. Biasi, O. Rusalimova, P. Barsukov, and A. Richter, 2007: Conservation of soil organic matter through cryoturbation in Arctic soils in Siberia. Journal of Geophysical Research, 112(G2), doi: 10.1029/2006jg000258.

Kasischke, E. S., D. L. Verbyla, T. S. Rupp, A. D. McGuire, K. A. Murphy, R. Jandt, J. L. Barnes, E. E. Hoy, P. A. Duffy, M. Calef, and M. R. Turetsky, 2010: Alaska’s changing fire regime — implications for the vulnerability of its boreal forests. Canadian Journal of Forest Research, 40(7), 1313-1324, doi: 10.1139/x10-098.

Keiluweit, M., J. J. Bougoure, P. S. Nico, J. Pett-Ridge, P. K. Weber, and M. Kleber, 2015: Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5(6), 588-595, doi: 10.1038/nclimate2580.

Kettridge, N., M. R. Turetsky, J. H. Sherwood, D. K. Thompson, C. A. Miller, B. W. Benscoter, M. D. Flannigan, B. M. Wotton, and J. M. Waddington, 2015: Moderate drop in water table increases peatland vulnerability to post-fire regime shift. Scientific Reports, 5, 8063, doi: 10.1038/srep08063.

Kibblewhite, M. G., K. Ritz, and M. J. Swift, 2008: Soil health in agricultural systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1492), 685-701, doi: 10.1098/rstb.2007.2178.

Köchy, M., R. Hiederer, and A. Freibauer, 2015: Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil, 1(1), 351-365, doi: 10.5194/soil-1-351-2015.

Kong, A. Y. Y., and J. Six, 2010: Tracing root vs. residue carbon into soils from conventional and alternative cropping systems. Soil Science Society of America Journal, 74(4), 1201, doi: 10.2136/sssaj2009.0346.

Kopittke, P. M., R. C. Dalal, D. Finn, and N. W. Menzies, 2017: Global changes in soil stocks of carbon, nitrogen, phosphorus, and sulphur as influenced by long-term agricultural production. Global Change Biology, 23(6), 2509-2519, doi: 10.1111/gcb.13513.

Koven, C. D., 2013: Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience, 6(6), 452-456, doi: 10.1038/ngeo1801.

Koven, C. D., D. M. Lawrence, and W. J. Riley, 2015: Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings of the National Academy of Sciences USA, 112(12), 3752-3757, doi: 10.1073/pnas.1415123112.

Kroetsch, D. J., X. Geng, S. X. Chang, and D. D. Saurette, 2011: Organic soils of Canada: Part 1. Wetland organic soils. Canadian Journal of Soil Science, 91(5), 807-822, doi: 10.4141/cjss10043.

Kurz, W. A., C. H. Shaw, C. Boisvenue, G. Stinson, J. Metsaranta, D. Leckie, A. Dyk, C. Smyth, and E. T. Neilson, 2013: Carbon in Canada’s boreal forest — A synthesis. Environmental Reviews, 21(4), 260-292, doi: 10.1139/er-2013-0041.

Lacroix, E. M., C. L. Petrenko, and A. J. Friedland, 2016: Evidence for losses from strongly bound SOM pools after clear cutting in a northern hardwood forest. Soil Science, 181(5), 202-207, doi: 10.1097/ss.0000000000000147.

Laganiere, J., X. Cavard, B. W. Brassard, D. Pare, Y. Bergeron, and H. Y. H. Chen, 2015: The influence of boreal tree species mixtures on ecosystem carbon storage and fluxes. Forest Ecology and Management, 354, 119-129, doi: 10.1016/j.foreco.2015.06.029.

Lajtha, K., R. D. Bowden, and K. Nadelhoffer, 2014a: Litter and root manipulations provide insights into soil organic matter dynamics and stability. Soil Science Society of America Journal, 78(S1), S261, doi: 10.2136/sssaj2013.08.0370nafsc.

Lajtha, K., K. L. Townsend, M. G. Kramer, C. Swanston, R. D. Bowden, and K. Nadelhoffer, 2014b: Changes to particulate versus mineral-associated soil carbon after 50 years of litter manipulation in forest and prairie experimental ecosystems. Biogeochemistry, 119(1-3), 341-360, doi: 10.1007/s10533-014-9970-5.

Lal, R., 2001: World cropland soils as a source or sink for atmospheric carbon. Advances in Agronomy, 71, 145-191, doi: 10.1016/S0065-2113(01)71014-0.

Lal, R., 2003: Soil erosion and the global carbon budget. Environmental International, 29(4), 437-450, doi: 10.1016/S0160-4120(02)00192-7.

Lal, R., 2004: Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22, doi: 10.1016/j.geoderma.2004.01.032.

Lal, R., and D. Pimentel, 2008: Soil erosion: A carbon sink or source? Science, 319(5866), 1040-1042; author reply 1040-1042, doi: 10.1126/science.319.5866.1040.

Lal, R., W. Negassa, and K. Lorenz, 2015: Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15, 79-86, doi: 10.1016/j.cosust.2015.09.002.

Lamarque, J. F., J. T. Kiehl, G. P. Brasseur, T. Butler, P. Cameron­Smith, W. D. Collins, W. J. Collins, C. Granier, D. Hauglustaine, P. G. Hess, E. A. Holland, L. Horowitz, M. G. Lawrence, D. McKenna, P. Merilees, M. J. Prather, P. J. Rasch, D. Rotman, D. Shindell, and P. Thornton, 2005: Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. Journal of Geophysical Research: Atmospheres, 110(D19), doi: 10.1029/2005jd005825.

Lavallee, S., and S. Plouffe, 2004: The ecolabel and sustainable development. International Journal of Life Cycle Assessment, 9(6), 349-354, doi: 10.1065/lca2004.09.180.2.

LeBauer, D. S., and K. K. Treseder, 2008: Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371-379, doi: 10.1890/06-2057.1.

Lehmann, J., and M. Kleber, 2015: The contentious nature of soil organic matter. Nature, 528(7580), 60-68, doi: 10.1038/nature16069.

Letang, D. L., and W. J. de Groot, 2012: Forest floor depths and fuel loads in upland Canadian forests. Canadian Journal of Forest Research, 42, 1551–1565., doi: 10.1139/x2012-093.

Li, D., S. Niu, and Y. Luo, 2012: Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: A ­meta-analysis. New Phytologist, 195(1), 172-181, doi: 10.1111/j.1469-8137.2012.04150.x.

Lin, L. H., and M. J. Simpson, 2016: Enhanced extractability of cutin- and suberin-derived organic matter with demineralization implies physical protection over chemical recalcitrance in soil. Organic Geochemistry, 97, 111-121, doi: 10.1016/j.orggeochem.2016.04.012.

Liu, L., and T. L. Greaver, 2010: A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13(7), 819-828, doi: 10.1111/j.1461-0248.2010.01482.x.

Liu, S., N. Bliss, E. Sundquist, and T. G. Huntington, 2003: Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition. Global Biogeochemical Cycles, 17(2), doi: 10.1029/2002gb002010.

Liu, S., Y. Wei, W. M. Post, R. B. Cook, K. Schaefer, and M. M. Thornton, 2013: The unified North American soil map and its implication on the soil organic carbon stock in North America. Biogeosciences, 10(5), 2915-2930, doi: 10.5194/bg-10-2915-2013.

Liu, W., S. Chen, X. Qin, F. Baumann, T. Scholten, Z. Zhou, W. Sun, T. Zhang, J. Ren, and D. Qin, 2012: Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau. Environmental Research Letters, 7(3), 035401.

Lu, X. L., D. W. Kicklighter, J. M. Melillo, J. M. Reilly, and L. Y. Xu, 2015: Land carbon sequestration within the conterminous United States: Regional- and state-level analyses. Journal of Geophysical Research: Biogeosciences, 120(2), 379-398, doi: 10.1002/2014jg002818.

Luo, Y., A. Ahlström, S. D. Allison, N. H. Batjes, V. Brovkin, N. Carvalhais, A. Chappell, P. Ciais, E. A. Davidson, A. Finzi, K. Georgiou, B. Guenet, O. Hararuk, J. W. Harden, Y. He, F. Hopkins, L. Jiang, C. Koven, R. B. Jackson, C. D. Jones, M. J. Lara, J. Liang, A. D. McGuire, W. Parton, C. Peng, J. T. Randerson, A. Salazar, C. A. Sierra, M. J. Smith, H. Tian, K. E. O. Todd-Brown, M. Torn, K. J. van Groenigen, Y. P. Wang, T. O. West, Y. Wei, W. R. Wieder, J. Xia, X. Xu, X. Xu, and T. Zhou, 2016: Toward more realistic projections of soil carbon dynamics by Earth system models. Global Biogeochemical Cycles, 30(1), 40-56, doi: 10.1002/2015gb005239.

Luo, Y., S. Wan, D. Hui, and L. L. Wallace, 2001: Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 413(6856), 622-625, doi: 10.1038/35098065.

Luo, Z., E. Wang, and O. J. Sun, 2010: Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agriculture, Ecosystems and Environment, 139(1-2), 224-231, doi: 10.1016/j.agee.2010.08.006.

Luo, Z.-B., and A. Polle, 2009: Wood composition and energy content in a poplar short rotation plantation on fertilized agricultural land in a future CO2 atmosphere. Global Change Biology, 15(1), 38-47, doi: 10.1111/j.1365-2486.2008.01768.x.

Mann, D. H., T. Scott Rupp, M. A. Olson, and P. A. Duffy, 2012: Is Alaska’s boreal forest now crossing a major ecological threshold? Arctic, Antarctic, and Alpine Research, 44(3), 319-331, doi: 10.1657/1938-4246-44.3.319.

Manzoni, S., and A. Porporato, 2009: Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biology and Biochemistry, 41(7), 1355-1379, doi: 10.1016/j.soilbio.2009.02.031.

Mayzelle, M. M., M. L. Krusor, K. Lajtha, R. D. Bowden, and J. Six, 2014: Effects of detrital inputs and roots on carbon saturation deficit of a temperate forest soil. Soil Science Society of America Journal, 78(S1), S76, doi: 10.2136/sssaj2013.09.0415nafsc.

McBratney, A. B., M. L. Mendonça Santos, and B. Minasny, 2003: On digital soil mapping. Geoderma, 117(1-2), 3-52, doi: 10.1016/s0016-7061(03)00223-4.

McCarthy, J. F., J. Ilavsky, J. D. Jastrow, L. M. Mayer, E. Perfect, and J. Zhuang, 2008: Protection of organic carbon in soil microaggregates via restructuring of aggregate porosity and filling of pores with accumulating organic matter. Geochimica et Cosmochimica Acta, 72(19), 4725-4744, doi: 10.1016/j.gca.2008.06.015.

McGuire, A. D., L. G. Anderson, T. R. Christensen, S. Dallimore, L. Guo, D. J. Hayes, M. Heimann, T. D. Lorenson, R. W. Macdonald, and N. Roulet, 2009: Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79(4), 523-555, doi: 10.1890/08-2025.1.

McLauchlan, K., 2007: The nature and longevity of agricultural impacts on soil carbon and nutrients: A review. Ecosystems, 9(8), 1364-1382, doi: 10.1007/s10021-005-0135-1.

Mishra, U., and W. J. Riley, 2012: Alaskan soil carbon stocks: Spatial variability and dependence on environmental factors. Biogeosciences, 9(9), 3637-3645, doi: 10.5194/bg-9-3637-2012.

Mishra, U., J. D. Jastrow, R. Matamala, G. Hugelius, C. D. Koven, J. W. Harden, C. L. Ping, G. J. Michaelson, Z. Fan, R. M. Miller, A. D. McGuire, C. Tarnocai, P. Kuhry, W. J. Riley, K. Schaefer, E. A. G. Schuur, M. T. Jorgenson, and L. D. Hinzman, 2013: Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: A review of recent progress and remaining challenges. Environmental Research Letters, 8(3), 035020, doi: 10.1088/1748-9326/8/3/035020.

Mishra, U., R. Lal, D. S. Liu, and M. Van Meirvenne, 2010: Predicting the spatial variation of the soil organic carbon pool at a regional scale. Soil Science Society of America Journal, 74(3), 906-914, doi: 10.2136/sssaj2009.0158.

Montgomery, D. R., 2007: Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences USA, 104(33), 13268-13272, doi: 10.1073/pnas.0611508104.

Nahlik, A. M., and M. S. Fennessy, 2016: Carbon storage in US wetlands. Nature Communications, 7, 13835, doi: 10.1038/ncomms13835.

NAS, 2010: Verifying Greenhouse Gas Emissions: Methods to Support International Climate Agreements. The National Academies Press. [URL]

Navarro-Garcia, F., M. A. Casermeiro, and J. P. Schimel, 2012: When structure means conservation: Effect of aggregate structure in controlling microbial responses to rewetting events. Soil Biology and Biochemistry, 44(1), 1-8, doi: 10.1016/j.soilbio.2011.09.019.

Nave, L. E., C. W. Swanston, U. Mishra, and K. J. Nadelhoffer, 2013: Afforestation effects on soil carbon storage in the United States: A synthesis. Soil Science Society of America Journal, 77(3), 1035, doi: 10.2136/sssaj2012.0236.

Nave, L. E., E. D. Vance, C. W. Swanston, and P. S. Curtis, 2010: Harvest impacts on soil carbon storage in temperate forests. Forest Ecology and Management, 259(5), 857-866, doi: 10.1016/j.foreco.2009.12.009.

Ogle, S. M., F. J. Breidt, and K. Paustian, 2005: Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry, 72(1), 87-121, doi: 10.1007/s10533-004-0360-2.

Ogle, S. M., F. J. Breidt, M. Easter, S. Williams, K. Killian, and K. Paustian, 2010: Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Global Change Biology, 16(2), 810-822, doi: 10.1111/j.1365-2486.2009.01951.x.

Ogle, S. M., L. Olander, L. Wollenberg, T. Rosenstock, F. Tubiello, K. Paustian, L. Buendia, A. Nihart, and P. Smith, 2014: Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: Providing the basis for action. Global Change Biology, 20(1), 1-6, doi: 10.1111/gcb.12361.

Oldfield, E. E., S. A. Wood, C. A. Palm, and M. A. Bradford, 2015: How much SOM is needed for sustainable agriculture? Frontiers in Ecology and the Environment, 13(10), 527, doi: 10.1890/1540-9295-13.10.527.

Olefeldt, D., S. Goswami, G. Grosse, D. Hayes, G. Hugelius, P. Kuhry, A. D. McGuire, V. E. Romanovsky, A. B. Sannel, E. A. Schuur, and M. R. Turetsky, 2016: Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7, 13043, doi: 10.1038/ncomms13043.

Orgiazzi, A., M. B. Dunbar, P. Panagos, G. A. de Groot, and P. Lemanceau, 2015: Soil biodiversity and DNA barcodes: Opportunities and challenges. Soil Biology and Biochemistry, 80, 244-250, doi: 10.1016/j.soilbio.2014.10.014.

Palm, C., H. Blanco-Canqui, F. DeClerck, L. Gatere, and P. Grace, 2014: Conservation agriculture and ecosystem services: An overview. Agriculture, Ecosystems and Environment, 187, 87-105, doi: 10.1016/j.agee.2013.10.010.

Papa, G., B. Scaglia, A. Schievano, and F. Adani, 2013: Nanoscale structure of organic matter could explain litter decomposition. Biogeochemistry, 117(2-3), 313-324, doi: 10.1007/s10533-013-9863-z.

Papanicolaou, A. N., K. M. Wacha, B. K. Abban, C. G. Wilson, J. L. Hatfield, C. O. Stanier, and T. R. Filley, 2015: From soilscapes to landscapes: A landscape-oriented approach to simulate soil organic carbon dynamics in intensively managed landscapes. Journal of Geophysical Research: Biogeosciences, 120(11), 2375-2401, doi: 10.1002/2015jg003078.

Paustian, K., J. Lehmann, S. Ogle, D. Reay, G. P. Robertson, and P. Smith, 2016: Climate-smart soils. Nature, 532(7597), 49-57, doi: 10.1038/nature17174.

Paustian, K., O. Andrén, H. H. Janzen, R. Lal, P. Smith, G. Tian, H. Tiessen, M. Noordwijk, and P. L. Woomer, 1997: Agricultural soils as a sink to mitigate CO2 emissions. Soil Use and Management, 13(s4), 230-244, doi: 10.1111/j.1475-2743.1997.tb00594.x.

Paz Pellat, F., J. Argumedo Espinoza, C. O. Cruz Gaistardo, J. D. Etchevers, B., and B. de Jong, 2016: Distribución especial y temporal del carbono orgánico del suelo en los ecosistemas terrestres. Terra Latinoam, 34(3), 289-310.

Peckham, S. D., and S. T. Gower, 2011: Simulated long-term effects of harvest and biomass residue removal on soil carbon and nitrogen content and productivity for two Upper Great Lakes forest ecosystems. Global Change Biology Bioenergy, 3(2), 135-147, doi: 10.1111/j.1757-1707.2010.01067.x.

Petrenko, C. L., and A. J. Friedland, 2015: Mineral soil carbon pool responses to forest clearing in northeastern hardwood forests. GCB Bioenergy, 7(6), 1283-1293, doi: 10.1111/gcbb.12221.

Phillips, C. L., B. Bond-Lamberty, A. R. Desai, M. Lavoie, D. Risk, J. Tang, K. Todd-Brown, and R. Vargas, 2016: The value of soil respiration measurements for interpreting and modeling terrestrial carbon cycling. Plant and Soil, 413(1-2), 1–25, doi: 10.1007/s11104-016-3084-x.

Ping, C. L., G. J. Michaelson, M. T. Jorgenson, J. M. Kimble, H. Epstein, V. E. Romanovsky, and D. A. Walker, 2008: High stocks of soil organic carbon in the North American Arctic region. Nature Geoscience, 1(9), 615-619, doi: 10.1038/ngeo284.

Pitre, F. E., J. E. K. Cooke, and J. J. Mackay, 2007: Short-term effects of nitrogen availability on wood formation and fibre properties in hybrid poplar. Trees–Structure and Function, 21(2), 249-259, doi: 10.1007/s00468-007-0123-5.

Pouyat, R. V., I. D. Yesilonis, and D. J. Nowak, 2006: Carbon storage by urban soils in the United States. Journal of Environmental Quality, 35(4), 1566-1575, doi: 10.2134/jeq2005.0215.

Powlson, D. S., C. M. Stirling, M. L. Jat, B. G. Gerard, C. A. Palm, P. A. Sanchez, and K. G. Cassman, 2014: Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678-683, doi: 10.1038/nclimate2292.

Quine, T. A., and K. van Oost, 2007: Quantifying carbon sequestration as a result of soil erosion and deposition: Retrospective assessment using caesium-137 and carbon inventories. Global Change Biology, 13(12), 2610-2625, doi: 10.1111/j.1365-2486.2007.01457.x.

Rasse, D. P., C. Rumpel, and M.-F. Dignac, 2005: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant and Soil, 269(1-2), 341-356, doi: 10.1007/s11104-004-0907-y.

Rasse, D. P., M. F. Dignac, H. Bahri, C. Rumpel, A. Mariotti, and C. Chenu, 2006: Lignin turnover in an agricultural field: From plant residues to soil-protected fractions. European Journal of Soil Science, 57(4), 530-538, doi: 10.1111/j.1365-2389.2006.00806.x.

Reay, D. S., F. Dentener, P. Smith, J. Grace, and R. A. Feely, 2008: Global nitrogen deposition and carbon sinks. Nature Geoscience, 1(7), 430-437, doi: 10.1038/ngeo230.

Regnier, P., P. Friedlingstein, P. Ciais, F. T. Mackenzie, N. Gruber, I. A. Janssens, G. G. Laruelle, R. Lauerwald, S. Luyssaert, A. J. Andersson, S. Arndt, C. Arnosti, A. V. Borges, A. W. Dale, A. Gallego-Sala, Y. Godderis, N. Goossens, J. Hartmann, C. Heinze, T. Ilyina, F. Joos, D. E. LaRowe, J. Leifeld, F. J. R. Meysman, G. Munhoven, P. A. Raymond, R. Spahni, P. Suntharalingam, and M. Thullner, 2013: Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8), 597-607, doi: 10.1038/Ngeo1830.

Richter, D. D., and R. A. Houghton, 2011: Gross CO2 fluxes from land-use change: Implications for reducing global emissions and increasing sinks. Carbon Management, 2(1), 41-47, doi: 10.4155/Cmt.10.43.

Riggs, C. E., and S. E. Hobbie, 2016: Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biology and Biochemistry, 99, 54-65, doi: 10.1016/j.soilbio.2016.04.023.

Roach, J. K., B. Griffith, and D. Verbyla, 2013: Landscape influences on climate-related lake shrinkage at high latitudes. Global Change Biology, 19(7), 2276-2284, doi: 10.1111/gcb.12196.

Rosenbloom, N. A., J. W. Harden, J. C. Neff, and D. S. Schimel, 2006: Geomorphic control of landscape carbon accumulation. Journal of Geophysical Research, 111(G1), doi: 10.1029/2005jg000077.

Rumpel, C., and I. Kögel-Knabner, 2010: Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant and Soil, 338(1-2), 143-158, doi: 10.1007/s11104-010-0391-5.

Russell, A. E., C. A. Cambardella, J. J. Ewel, and T. B. Parkin, 2004: Species, rotation, and life-form diversity effects on soil carbon in experimental tropical ecosystems. Ecological Applications, 14(1), 47-60, doi: 10.1890/02-5299.

Ryals, R., M. D. Hartman, W. J. Parton, M. S. DeLonge, and W. L. Silver, 2015: Long-term climate change mitigation potential with organic matter management on grasslands. Ecological Applications, 25(2), 531-545, doi: 10.1890/13-2126.1.

Rytter, R.-M., 2001: Biomass production and allocation, including fine-root turnover, and annual N uptake in lysimeter-grown basket willows. Forest Ecology and Management, 140(2-3), 177-192, doi: 10.1016/s0378-1127(00)00319-4.

Saunois, M., P. Bousquet, B. Poulter, A. Peregon, P. Ciais, J. G. Canadell, E. J. Dlugokencky, G. Etiope, D. Bastviken, S. Houweling, G. Janssens-Maenhout, F. N. Tubiello, S. Castaldi, R. B. Jackson, M. Alexe, V. K. Arora, D. J. Beerling, P. Bergamaschi, D. R. Blake, G. Brailsford, V. Brovkin, L. Bruhwiler, C. Crevoisier, P. Crill, K. Covey, C. Curry, C. Frankenberg, N. Gedney, L. Hoglund-Isaksson, M. Ishizawa, A. Ito, F. Joos, H. S. Kim, T. Kleinen, P. Krummel, J. F. Lamarque, R. Langenfelds, R. Locatelli, T. Machida, S. Maksyutov, K. C. McDonald, J. Marshall, J. R. Melton, I. Morino, V. Naik, S. O’Doherty, F. J. W. Parmentier, P. K. Patra, C. H. Peng, S. S. Peng, G. P. Peters, I. Pison, C. Prigent, R. Prinn, M. Ramonet, W. J. Riley, M. Saito, M. Santini, R. Schroeder, I. J. Simpson, R. Spahni, P. Steele, A. Takizawa, B. F. Thornton, H. Q. Tian, Y. Tohjima, N. Viovy, A. Voulgarakis, M. van Weele, G. R. van der Werf, R. Weiss, C. Wiedinmyer, D. J. Wilton, A. Wiltshire, D. Worthy, D. Wunch, X. Y. Xu, Y. Yoshida, B. Zhang, Z. Zhang, and Q. Zhu, 2016: The global methane budget 2000-2012. Earth System Science Data, 8(2), 697-751, doi: 10.5194/essd-8-697-2016.

Schaefer, K., T. Zhang, L. Bruhwiler, and A. P. Barrett, 2011: Amount and timing of permafrost carbon release in response to climate warming. Tellus B: Chemical and Physical Meteorology, 63(2), 165-180, doi: 10.1111/j.1600-0889.2011.00527.x.

Schrumpf, M., K. Kaiser, G. Guggenberger, T. Persson, I. Kogel-Knabner, and E. D. Schulze, 2013: Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences, 10(3), 1675-1691, doi: 10.5194/bg-10-1675-2013.

Schuur, E. A., A. D. McGuire, C. Schadel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, D. M. Lawrence, S. M. Natali, D. Olefeldt, V. E. Romanovsky, K. Schaefer, M. R. Turetsky, C. C. Treat, and J. E. Vonk, 2015: Climate change and the permafrost carbon feedback. Nature, 520(7546), 171-179, doi: 10.1038/nature14338.

Segarra, K. E., F. Schubotz, V. Samarkin, M. Y. Yoshinaga, K. U. Hinrichs, and S. B. Joye, 2015: High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature Communications, 6, 7477, doi: 10.1038/ncomms8477.

Seneviratne, S. I., N. Nicholls, D. Easterling, C. M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein, A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel On Climate Change. [C. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, and P. M. Midgley (eds.)]. Cambridge University Press, UK, pp. 109-230.

Shaw, C. H., E. Banfield, and W. A. Kurz, 2008: Stratifying soils into pedogenically similar categories for modeling forest soil carbon. Canadian Journal of Soil Science, 88(4), 501-516, doi: 10.4141/cjss07099.

Shaw, C. H., K. A. Bona, D. A. Thompson, D. D. Dimitrov, J. S. Bhatti, A. B. Hilger, K. L. Webster, and W. A. Kurz, 2016: Canadian Model for Peatlands Version 1.0: A Model Design Document. Information report NOR-X-425. Natural Resources Canada, Canadian Forest Service, Edmonton, AB, Canada, 20 pp. [URL]

Shaw, C. H., K. A. Bona, W. A. Kurz, and J. W. Fyles, 2015: The importance of tree species and soil taxonomy to modeling forest soil carbon stocks in Canada. Geoderma Regional, 4, 114-125, doi: 10.1016/j.geodrs.2015.01.001.

Shi, S. W., W. Zhang, P. Zhang, Y. Q. Yu, and F. Ding, 2013: A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. Forest Ecology and Management, 296, 53-63, doi: 10.1016/j.foreco.2013.01.026.

Six, J., H. Bossuyt, S. Degryze, and K. Denef, 2004: A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79(1), 7-31, doi: 10.1016/j.still.2004.03.008.

Six, J., R. T. Conant, E. A. Paul, and K. Paustian, 2002: Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241(2), 155-176, doi: 10.1023/a:1016125726789.

Smith, P., 2008: Land use change and soil organic carbon dynamics. Nutrient Cycling in Agroecosystems, 81(2), 169-178, doi: 10.1007/s10705-007-9138-y.

Smith, P., S. J. Chapman, W. A. Scott, H. I. J. Black, M. Wattenbach, R. Milne, C. D. Campbell, A. Lilly, N. Ostle, P. E. Levy, D. G. Lumsdon, P. Millard, W. Towers, S. Zaehle, and J. U. Smith, 2007: Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978–2003. Global Change Biology, 13(12), 2605-2609, doi: 10.1111/j.1365-2486.2007.01458.x.

Smith, S. V., W. H. Renwick, R. W. Buddemeier, and C. J. Crossland, 2001: Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochemical Cycles, 15(3), 697-707, doi: 10.1029/2000gb001341.

Smyth, C. E., W. A. Kurz, and J. A. Trofymow, 2011: Including the effects of water stress on decomposition in the carbon budget model of the Canadian forest sector CBM-CFS3. Ecological Modelling, 222(5), 1080-1091, doi: 10.1016/j.ecolmodel.2010.12.005.

Soil Conservation Council of Canada, 2016: Reduced Tillage Helps Reduce Carbon Dioxide Levels. [URL]

Soil Survey, and T. Loecke, 2016: Rapid Carbon Assessment: Methodology, Sampling, and Summary. [S. Wills (ed.)]. U.S. Department of Agriculture, Natural Resources Conservation Service.

Solomon, D., J. Lehmann, J. Harden, J. Wang, J. Kinyangi, K. Heymann, C. Karunakaran, Y. S. Lu, S. Wirick, and C. Jacobsen, 2012: Micro- and nano-environments of carbon sequestration: ­Multi-element STXM-NEXAFS spectromicroscopy assessment of microbial carbon and mineral associations. Chemical Geology, 329, 53-73, doi: 10.1016/j.chemgeo.2012.02.002.

Stallard, R. F., 1998: Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles, 12(2), 231-257, doi: 10.1029/98gb00741.

Subke, J.-A., I. Inglima, and M. Francesca Cotrufo, 2006: Trends and methodological impacts in soil CO2 efflux partitioning: A metaanalytical review. Global Change Biology, 12(6), 921-943, doi: 10.1111/j.1365-2486.2006.01117.x.

Sulman, B. N., R. P. Phillips, A. C. Oishi, E. Shevliakova, and S. W. Pacala, 2014: Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nature Climate Change, 4(12), 1099-1102, doi: 10.1038/Nclimate2436.

Sundquist, E. T., K. V. Ackerman, N. B. Bliss, J. M. Kellndorfer, M. C. Reeves, and M. G. Rollins, 2009: Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon Sequestration Capacity: U.S. Geological Survey Open-File Report 2009–1283. 15 pp. [URL]

Tang, J. W., L. Misson, A. Gershenson, W. X. Cheng, and A. H. Goldstein, 2005: Continuous measurements of soil respiration with and without roots in a ponderosa pine plantation in the Sierra Nevada mountains. Agricultural and Forest Meteorology, 132(3-4), 212-227, doi: 10.1016/j.agrformet.2005.07.011.

Tang, J., and W. J. Riley, 2014: Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nature Climate Change, 5(1), 56-60, doi: 10.1038/nclimate2438.

Tang, J., and W. J. Riley, 2016: Large uncertainty in ecosystem carbon dynamics resulting from ambiguous numerical coupling of carbon and nitrogen biogeochemistry: A demonstration with the ACME land model. Biogeosciences Discussion, 1-27, doi: 10.5194/bg-2016-233.

Tarnocai, C. 2006: The effect of climate change on carbon in Canadian peatlands. Global and Planetary Change, 53, 222–232. doi: 10.1016/j.gloplacha.2006.03.012.

Tarnocai, C., 1997: The amount of organic carbon in various soil orders and ecological provinces in Canada. In: Soil Processes and the Carbon Cycle. [R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart (eds.)]. Lewis Publishers, CRC Press.

Tate, K. R., 2015: Soil methane oxidation and land-use change — from process to mitigation. Soil Biology and Biochemistry, 80, 260-272, doi: 10.1016/j.soilbio.2014.10.010.

Thompson, D. K., B. N. Simpson, and A. Beaudoin, 2016: Using forest structure to predict the distribution of treed boreal peatlands in Canada. Forest Ecology and Management, 372, 19-27, doi: 10.1016/j.foreco.2016.03.056.

Tian, H. Q., C. Q. Lu, P. Ciais, A. M. Michalak, J. G. Canadell, E. Saikawa, D. N. Huntzinger, K. R. Gurney, S. Sitch, B. W. Zhang, J. Yang, P. Bousquet, L. Bruhwiler, G. S. Chen, E. Dlugokencky, P. Friedlingstein, J. Melillo, S. F. Pan, B. Poulter, R. Prinn, M. Saunois, C. R. Schwalm, and S. C. Wofsy, 2016: The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 531(7593), 225-228, doi: 10.1038/nature16946.

Tian, H., C. Lu, J. Yang, K. Banger, D. N. Huntzinger, C. R. Schwalm, A. M. Michalak, R. Cook, P. Ciais, D. Hayes, M. Huang, A. Ito, A. K. Jain, H. Lei, J. Mao, S. Pan, W. M. Post, S. Peng, B. Poulter, W. Ren, D. Ricciuto, K. Schaefer, X. Shi, B. Tao, W. Wang, Y. Wei, Q. Yang, B. Zhang, and N. Zeng, 2015: Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. Global Biogeochemical Cycles, 29(6), 775-792, doi: 10.1002/2014GB005021.

Todd-Brown, K. E. O., J. T. Randerson, F. Hopkins, V. Arora, T. Hajima, C. Jones, E. Shevliakova, J. Tjiputra, E. Volodin, T. Wu, Q. Zhang, and S. D. Allison, 2014: Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences, 11(8), 2341-2356, doi: 10.5194/bg-11-2341-2014.

Todd-Brown, K. E. O., J. T. Randerson, W. M. Post, F. M. Hoffman, C. Tarnocai, E. A. G. Schuur, and S. D. Allison, 2013: Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences, 10(3), 1717-1736, doi: 10.5194/bg-10-1717-2013.

Trofymow, J. A., C. M. Preston, and C. E. Prescott, 1995: Litter quality and its potential effect on decay rates of materials from Canadian forests. Water Air and Soil Pollution, 82(1-2), 215-226, doi: 10.1007/Bf01182835.

Turetsky, M. R., B. Benscoter, S. Page, G. Rein, G. R. van der Werf, and A. Watts, 2014: Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11-14, doi: 10.1038/ngeo2325.

Turetsky, M. R., E. S. Kane, J. W. Harden, R. D. Ottmar, K. L. Manies, E. Hoy, and E. S. Kasischke, 2011: Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 4(1), 27-31, doi: 10.1038/Ngeo1027.

U.S. EPA, 2015: Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2013. United States Environmental Protection Agency, EPA 430-R-15-004, Washington, DC: US-EPA. [URL]

U.S. EPA, 2017: Inventory of U.S. Greenhouse Gas Emissions Sinks 1990-2015. United States Environmental Protection Agency, EPA 430-P-17-001. [URL]

Upson, M. A., P. J. Burgess, and J. I. L. Morison, 2016: Soil carbon changes after establishing woodland and agroforestry trees in a grazed pasture. Geoderma, 283, 10-20, doi: 10.1016/j.geoderma.2016.07.002.

Uroz, S., L. C. Kelly, M. P. Turpault, C. Lepleux, and P. Frey-Klett, 2015: The mineralosphere concept: Mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends in Microbiology, 23(12), 751-762, doi: 10.1016/j.tim.2015.10.004.

USDA Soil Conservation Service, 1993: State Soil Geographic Data Base (STATSGO) for the Conterminous United States., Misc. Publ. 1492. U.S. Government Printing Office, Washington, DC.

van der Heijden, M. G., R. Streitwolf-Engel, R. Riedl, S. Siegrist, A. Neudecker, K. Ineichen, T. Boller, A. Wiemken, and I. R. Sanders, 2006: The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytologist, 172(4), 739-752, doi: 10.1111/j.1469-8137.2006.01862.x.

Van Oost, K., G. Verstraeten, S. Doetterl, B. Notebaert, F. Wiaux, N. Broothaerts, and J. Six, 2012: Legacy of human-induced C erosion and burial on soil-atmosphere C exchange. Proceedings of the National Academy of Sciences USA, 109(47), 19492-19497, doi: 10.1073/pnas.1211162109.

Van Oost, K., T. A. Quine, G. Govers, S. De Gryze, J. Six, J. W. Harden, J. C. Ritchie, G. W. McCarty, G. Heckrath, C. Kosmas, J. V. Giraldez, J. R. da Silva, and R. Merckx, 2007: The impact of agricultural soil erosion on the global carbon cycle. Science, 318(5850), 626-629, doi: 10.1126/science.1145724.

VandenBygaart, A. J., D. Kroetsch, E. G. Gregorich, and D. Lobb, 2012: Soil C erosion and burial in cropland. Global Change Biology, 18(4), 1441-1452, doi: 10.1111/j.1365-2486.2011.02604.x.

VandenBygaart, A. J., E. G. Gregorich, and D. A. Angers, 2003: Influence of agricultural management on soil organic carbon: A compendium and assessment of Canadian studies. Canadian Journal of Soil Science, 83(4), 363-380, doi: 10.4141/s03-009.

Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger, and D. G. Tilman, 1997: Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7(3), 737-750, doi: 10.1890/1051-0761(1997)007[0737:haotgn]2.0.co;2.

Vrebos, D., F. Bampa, R. Creamer, C. Gardi, B. Ghaley, A. Jones, M. Rutgers, T. Sandén, J. Staes, and P. Meire, 2017: The impact of policy instruments on soil multifunctionality in the European Union. Sustainability, 9(3), 407, doi: 10.3390/su9030407.

Waddington, J. M., P. J. Morris, N. Kettridge, G. Granath, D. K. Thompson, and P. A. Moore, 2015: Hydrological feedbacks in northern peatlands. Ecohydrology, 8(1), 113-127, doi: 10.1002/eco.1493.

Wang, Y. P., B. C. Chen, W. R. Wieder, M. Leite, B. E. Medlyn, M. Rasmussen, M. J. Smith, F. B. Agusto, F. Hoffman, and Y. Q. Luo, 2014: Oscillatory behavior of two nonlinear microbial models of soil carbon decomposition. Biogeosciences, 11(7), 1817-1831, doi: 10.5194/bg-11-1817-2014.

Wang, Z. G., T. Hoffmann, J. Six, J. O. Kaplan, G. Govers, S. Doetterl, and K. Van Oost, 2017: Human-induced erosion has offset one-third of carbon emissions from land cover change. Nature Climate Change, 7(5), 345, doi: 10.1038/Nclimate3263.

Ward, C., D. Pothier, and D. Paré, 2014: Do boreal forests need fire disturbance to maintain productivity? Ecosystems, 17(6), 1053-1067, doi: 10.1007/s10021-014-9782-4.

Ward, S. E., S. M. Smart, H. Quirk, J. R. Tallowin, S. R. Mortimer, R. S. Shiel, A. Wilby, and R. D. Bardgett, 2016: Legacy effects of grassland management on soil carbon to depth. Global Change Biology, 22(8), 2929-2938, doi: 10.1111/gcb.13246.

Wardle, D. A., K. I. Bonner, and G. M. Barker, 2002: Linkages between plant litter decomposition, litter quality, and vegetation responses to herbivores. Functional Ecology, 16(5), 585-595, doi: 10.1046/j.1365-2435.2002.00659.x.

Wear, D. N., and J. W. Coulston, 2015: From sink to source: Regional variation in U.S. forest carbon futures. Scientific Reports, 5, 16518, doi: 10.1038/srep16518.

Webster, K. A., C. Akumu, J. Bhatti, K. Bona, D. Dimitrov, A. Hilger, W. A. Kurz, C. Shaw, C. Theriault, D. Thompson, and S. Wilson, 2016: Development of a Forested Peatland Carbon Dynamics Module for the Carbon Budget Model of the Canadian Forest Sector Workshop Report, GLC-X-14. [URL]

Wieder, W. R., A. S. Grandy, C. M. Kallenbach, and G. B. Bonan, 2014: Integrating microbial physiology and physio-chemical principles in soils with the Microbial-Mineral Carbon Stabilization (MIMICS) model. Biogeosciences, 11(14), 3899-3917, doi: 10.5194/bg-11-3899-2014.

Wieder, W. R., G. B. Bonan, and S. D. Allison, 2013: Global soil carbon projections are improved by modelling microbial processes. Nature Climate Change, 3(10), 909-912, doi: 10.1038/nclimate1951.

Wills, S., T. Loecke, C. Sequeira, G. Teachman, S. Grunwald, and L. West, 2014: Overview of the U.S. Rapid Carbon Assessment project: Sampling design, initial summary and uncertainty estimates. In: Soil Carbon [A.E. Hartemink and K. McSweeney (eds.)]. Springer International Publishing, Cham, Switzerland, pp. 95-104, doi: 10.1007/978-3-319-04084-4_10.

Wisser, D., S. Marchenko, J. Talbot, C. Treat, and S. Frolking, 2011: Soil temperature response to 21st century global warming: The role of and some implications for peat carbon in thawing permafrost soils in North America. Earth System Dynamics, 2(1), 121-138, doi: 10.5194/esd-2-121-2011.

Woolf, D., J. E. Amonette, F. A. Street-Perrott, J. Lehmann, and S. Joseph, 2010: Sustainable biochar to mitigate global climate change. Nature Communications, 1, 56, doi: 10.1038/ncomms1053.

Xia, J., and S. Wan, 2008: Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179(2), 428-439, doi: 10.1111/j.1469-8137.2008.02488.x.

Xia, J., Y. Luo, Y. P. Wang, and O. Hararuk, 2013: Traceable components of terrestrial carbon storage capacity in biogeochemical models. Global Change Biology, 19(7), 2104-2116, doi: 10.1111/gcb.12172.

Xu, T., L. White, D. F. Hui, and Y. Q. Luo, 2006: Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Global Biogeochemical Cycles, 20(2), doi: 10.1029/2005gb002468.

Xu, X. F., P. E. Thornton, and W. M. Post, 2013: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography, 22(6), 737-749, doi: 10.1111/geb.12029.

Xu, X., Z. Shi, X. Chen, Y. Lin, S. Niu, L. Jiang, R. Luo, and Y. Luo, 2016: Unchanged carbon balance driven by equivalent responses of production and respiration to climate change in a mixed-grass prairie. Global Change Biology, 22(5), 1857-1866, doi: 10.1111/gcb.13192.

Yan, Z. F., C. X. Liu, K. E. Todd-Brown, Y. Y. Liu, B. Bond-­Lamberty, and V. L. Bailey, 2016: Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils. Biogeochemistry, 131(1-2), 121-134, doi: 10.1007/s10533-016-0270-0.

Yue, K., Y. Peng, C. Peng, W. Yang, X. Peng, and F. Wu, 2016: Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: A meta-analysis. Scientific Reports, 6, 19895, doi: 10.1038/srep19895.

Zak, D. R., K. S. Pregitzer, P. S. Curtis, J. A. Teeri, R. Fogel, and D. L. Randlett, 1993: Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant and Soil, 151(1), 105-117, doi: 10.1007/Bf00010791.

Zhang, W., P. F. Hendrix, L. E. Dame, R. A. Burke, J. Wu, D. A. Neher, J. Li, Y. Shao, and S. Fu, 2013: Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nature Communications, 4, 2576, doi: 10.1038/ncomms3576.

Zhou, L., X. Zhou, J. Shao, Y. Nie, Y. He, L. Jiang, Z. Wu, and S. Hosseini Bai, 2016: Interactive effects of global change factors on soil respiration and its components: A meta-analysis. Global Change Biology, 22(9), 3157-3169, doi: 10.1111/gcb.13253.


  1. Carbon dioxide equivalent (CO2e): Amount of CO2 that would produce the same effect on the radiative balance of Earth’s climate system as another greenhouse gas, such as methane (CH4) or nitrous oxide (N2O), on a 100-year timescale. For comparison to units of carbon, each kg CO2e is equivalent to 0.273 kg C (0.273 = 1/3.67). See Preface, p. 5, for details.


See Full Chapter & References