Lead Authors:
Edward A. G. Schuur, Northern Arizona University
A. David McGuire, U.S. Geological Survey and University of Alaska, Fairbanks
Vladimir Romanovsky, University of Alaska, Fairbanks
Contributing Authors:
Christina Schädel, Northern Arizona University
Michelle Mack, Northern Arizona University
Science Lead:
Sasha C. Reed, U.S. Geological Survey
Review Editor:
Marc G. Kramer, Washington State University, Vancouver
Federal Liaisons:
Zhiliang Zhu, U.S. Geological Survey
Eric Kasischke (former), NASA
Jared DeForest (former), DOE Office of Science

Arctic and Boreal Carbon

REFERENCES

Abbott, B. W., J. B. J. Jones, E. A. G. Schuur, F. S. I. Chapin, W. B. Bowden, M. S. Bret-Harte, H. E. Epstein, M. D. Flannigan, T. K. Harms, T. N. Hollingsworth, M. C. Mack, A. D. McGuire, S. Natali, M., A. V. Rocha, S. E. Tank, M. Turetsky, R., J. E. Vonk, K. P. Wickland, G. R. Aiken, H. D. Alexander, R. M. W. Amon, B. W. Bensoter, Y. Bergeron, K. Bishop, O. Blarquez, B. Bond-Lamberty, A. L. Breen, I. Buffam, Y. Cai, C. Carcaillet, S. K. Carey, J. M. Chen, H. Y. H. Chen, T. R. Christensen, L. W. Cooper, J. H. C. Cornelissen, W. J. de Groot, T. H. DeLuca, E. Dorrepaal, N. Fetcher, J. C. Finlay, B. C. Forbes, N. H. F. French, S. Gauthier, M. P. Girardin, S. J. Goetz, J. G. Goldammer, L. Gouch, P. Grogan, L. Guo, P. E. Higuera, L. Hinzman, F. S. Hu, G. Hugelius, E. E. Jafarov, R. Jandt, J. F. Johnstone, J. Karlsson, E. S. Kasischke, G. Kattner, R. Kelly, F. Keuper, G. W. Kling, P. Kortelainen, J. Kouki, P. Kuhry, H. Laudon, I. Laurion, R. W. Macdonald, P. J. Mann, P. J. Martikainen, J. W. McClelland, U. Molau, S. F. Oberbauer, D. Olefeldt, D. Paré, M.-A. Parisien, S. Payette, C. Peng, O. S. Pokrovksy, E. B. Rastetter, P. A. Raymond, M. K. Raynolds, G. Rein, J. F. Reynolds, M. Robard, B. M. Rogers, C. Schädel, K. Schaefer, I. K. Schmidt, A. Shvidenko, J. Sky, R. G. M. Spencer, G. Starr, R. G. Striegl, R. Teisserenc, L. J. Tranvik, T. Virtanen, J. M. Welker, and S. Zimov, 2016: Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: An expert assessment. Environmental Research Letters, 11(3), 034014.

Alexander, H. D., and M. C. Mack, 2016: A canopy shift in interior Alaskan boreal forests: Consequences for above- and belowground carbon and nitrogen pools during post-fire succession. Ecosystems, 19(1), 98-114, doi: 10.1007/s10021-015-9920-7.

Alexander, H. D., M. C. Mack, S. Goetz, M. M. Loranty, P. S. A. Beck, K. Earl, S. Zimov, S. Davydov, and C. C. Thompson, 2012: Carbon accumulation patterns during post-fire succession in Cajander larch (Larix cajanderi) forests of Siberia. Ecosystems, 15(7), 1065-1082, doi: 10.1007/s10021-012-9567-6.

AMAP, 2015: AMAP assessment 2015: Methane as an Arctic climate forcer. Arctic Monitoring and Assessment Programme, 139 pp. [URL]

Balser, A. W., J. B. Jones, and R. Gens, 2014: Timing of retrogressive thaw slump initiation in the Noatak Basin, northwest Alaska, USA. Journal of Geophysical Research: Earth Surface, 119(5), 1106-1120.

Balshi, M. S., A. D. McGuire, P. Duffy, M. Flannigan, D. W. Kicklighter, and J. Melillo, 2009: Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century. Global Change Biology, 15(6), 1491-1510, doi: 10.1111/j.1365-2486.2009.01877.x.

Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill, and A. Enrich-Prast, 2011: Freshwater methane emissions offset the continental carbon sink. Science, 331(6013), 50-50, doi: 10.1126/science.1196808.

Beck, P. S. A., and S. J. Goetz, 2011: Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environmental Research Letters, 6(4), 049501.

Belshe, E. F., E. A. G. Schuur, and B. M. Bolker, 2013: Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecology Letters, 16(10), 1307-1315, doi: 10.1111/ele.12164.

Berchet, A., P. Bousquet, I. Pison, R. Locatelli, F. Chevallier, J. D. Paris, E. J. Dlugokencky, T. Laurila, J. Hatakka, Y. Viisanen, D. E. J. Worthy, E. Nisbet, R. Fisher, J. France, D. Lowry, V. Ivakhov, and O. Hermansen, 2016: Atmospheric constraints on the methane emissions from the East Siberian Shelf. Atmospheric Chemistry and Physics, 16(6), 4147-4157, doi: 10.5194/acp-16-4147-2016.

Bergamaschi, P., S. Houweling, A. Segers, M. Krol, C. Frankenberg, R. A. Scheepmaker, E. Dlugokencky, S. C. Wofsy, E. A. Kort, C. Sweeney, T. Schuck, C. Brenninkmeijer, H. Chen, V. Beck, and C. Gerbig, 2013: Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements. Journal of Geophysical Research: Atmospheres, 118(13), 7350-7369, doi: 10.1002/jgrd.50480.

Biskaborn, B. K., J. P. Lanckman, H. Lantuit, K. Elger, D. A. Streletskiy, W. L. Cable, and V. E. Romanovsky, 2015: The new database of the Global Terrestrial Network for Permafrost (GTN-P). Earth System Science Data, 7(2), 245-259, doi: 10.5194/essd-7-245-2015.

Boby, L. A., E. A. G. Schuur, M. C. Mack, D. Verbyla, and J. F. Johnstone, 2010: Quantifying fire severity, carbon, and nitrogen emissions in Alaska’s boreal forest. Ecological Applications, 20(6), 1633-1647, doi: 10.1890/08-2295.1.

Bockheim, J. G., and K. M. Hinkel, 2007: The importance of “deep” organic carbon in permafrost-affected soils of Arctic Alaska. Soil Science Society of America Journal, 71(6), 1889-1892, doi: 10.2136/sssaj2007.0070N.

Bond-Lamberty, B., S. D. Peckham, D. E. Ahl, and S. T. Gower, 2007: Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature, 450(7166), 89-92, doi: 10.1038/nature06272.

Bracho, R., S. Natali, E. Pegoraro, K. G. Crummer, C. Schädel, G. Celis, L. Hale, L. Wu, H. Yin, J. M. Tiedje, K. T. Konstantinidis, Y. Luo, J. Zhou, and E. A. G. Schuur, 2016: Temperature sensitivity of organic matter decomposition of permafrost-region soils during laboratory incubations. Soil Biology and Biochemistry, 97, 1-14, doi: 10.1016/j.soilbio.2016.02.008.

Breen, A. L., A. Bennett, T. Kurkowski, M. Lindgren, J. Schroder, A. D. McGuire, and T. S. Rupp, 2016: Projecting vegetation and wildfire response to changing climate and fire management in interior Alaska. Alaska Fire Science Consortium Research Summary. 7 pp.

Bret-Harte, M. S., M. C. Mack, G. R. Shaver, D. C. Huebner, M. Johnston, C. A. Mojica, C. Pizano, and J. A. Reiskind, 2013: The response of Arctic vegetation and soils following an unusually severe tundra fire. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1624), doi: 10.1098/rstb.2012.0490.

Brosius, L. S., K. M. Walter Anthony, G. Grosse, J. P. Chanton, L. M. Farquharson, P. P. Overduin, and H. Meyer, 2012: Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation. Journal of Geophysical Research: Biogeosciences, 117(G1), G01022, doi: 10.1029/2011jg001810.

Brown, C. D., and J. F. Johnstone, 2012: Once burned, twice shy: Repeat fires reduce seed availability and alter substrate constraints on Picea mariana regeneration. Forest Ecology and Management, 266, 34-41, doi: 10.1016/j.foreco.2011.11.006.

Brown, J., O. J. J. Ferrians, J. A. Heginbottom, and E. S. Melnikov, 1997: Circum-Arctic map of permafrost and ground-ice conditions. Circum-Pacific Map 45. U.S. Geological Survey, doi: 10.3133/cp45. [URL]

Brown, J., O. J. J. Ferrians, J. A. Heginbottom, and E. S. Melnikov, 1998—revised February 2001: Circum-Arctic map of permafrost and ground-ice conditions. Circum-Pacific Map Series CP-45, scale 1:10,000,000, 1 sheet, National Snow and Ice Data Center/World Data Center for Glaciology. [URL]

Bruhwiler, L., E. Dlugokencky, K. Masarie, M. Ishizawa, A. Andrews, J. Miller, C. Sweeney, P. Tans, and D. Worthy, 2014: CarbonTracker-CH4: An assimilation system for estimating emissions of atmospheric methane. Atmospheric Chemistry and Physics, 14(16), 8269-8293, doi: 10.5194/acp-14-8269-2014.

Burke, E. J., I. P. Hartley, and C. D. Jones, 2012: Uncertainties in the global temperature change caused by carbon release from permafrost thawing. Cryosphere, 6(5), 1063-1076, doi: 10.5194/tc-6-1063-2012.

Burke, E. J., C. D. Jones, and C. D. Koven, 2013: Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. Journal of Climate, 26(14), 4897-4909, doi: 10.1175/jcli-d-12-00550.1.

Burke, E. J., A. Ekici, Y. Huang, S. E. Chadburn, C. Huntingford, P. Ciais, P. Friedlingstein, S. Peng, and G. Krinner, 2017: Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences, 14(12), 3051-3066, doi: 10.5194/bg-14-3051-2017.

Callaghan, T. V., L. O. Bjorn, Y. Chernov, T. Chapin, T. R. Christensen, B. Huntley, R. A. Ims, M. Johansson, D. Jolly, S. Jonasson, N. Matveyeva, N. Panikov, W. Oechel, and G. Shaver, 2004: Effects on the function of Arctic ecosystems in the short- and long-term perspectives. AMBIO, 33(7), 448-458, doi: 10.1639/0044-7447(2004)033[0448:eotfoa]2.0.co;2.

Chang, R. Y., C. E. Miller, S. J. Dinardo, A. Karion, C. Sweeney, B. C. Daube, J. M. Henderson, M. E. Mountain, J. Eluszkiewicz, J. B. Miller, L. M. Bruhwiler, and S. C. Wofsy, 2014: Methane emissions from Alaska in 2012 from CARVE airborne observations. Proceedings of the National Academy of Sciences USA, 111(47), 16694-16699, doi: 10.1073/pnas.1412953111.

Chapin, F. S., G. M. Woodwell, J. T. Randerson, E. B. Rastetter, G. M. Lovett, D. D. Baldocchi, D. A. Clark, M. E. Harmon, D. S. Schimel, R. Valentini, C. Wirth, J. D. Aber, J. J. Cole, M. L. Goulden, J. W. Harden, M. Heimann, R. W. Howarth, P. A. Matson, A. D. McGuire, J. M. Melillo, H. A. Mooney, J. C. Neff, R. A. Houghton, M. L. Pace, M. G. Ryan, S. W. Running, O. E. Sala, W. H. Schlesinger, and E. D. Schulze, 2006: Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems, 9(7), 1041-1050, doi: 10.1007/s10021-005-0105-7.

Chapin, F. S., P. A. Matson, and P. M. Vitousek, 2011: Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, 529 pp.

Commane, R., J. Lindaas, J. Benmergui, K. A. Luus, R. Y. Chang, B. C. Daube, E. S. Euskirchen, J. M. Henderson, A. Karion, J. B. Miller, S. M. Miller, N. C. Parazoo, J. T. Randerson, C. Sweeney, P. Tans, K. Thoning, S. Veraverbeke, C. E. Miller, and S. C. Wofsy, 2017: Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra. Proceedings of the National Academy of Sciences USA, 114(21), 5361-5366, doi: 10.1073/pnas.1618567114.

Crill, P. M., and B. F. Thornton, 2018: Whither methane in the IPCC process? Nature Climate Change, 8(3), 257-257, doi: 10.1038/s41558-017-0035-3.

Ding, J., F. Li, G. Yang, L. Chen, B. Zhang, L. Liu, K. Fang, S. Qin, Y. Chen, Y. Peng, C. Ji, H. He, P. Smith, and Y. Yang, 2016: The permafrost carbon inventory on the Tibetan plateau: A new evaluation using deep sediment cores. Global Change Biology, 22(8), 2688-2701, doi: 10.1111/gcb.13257.

Dixon, R. K., A. M. Solomon, S. Brown, R. A. Houghton, M. C. Trexier, and J. Wisniewski, 1994: Carbon pools and flux of global forest ecosystems. Science, 263(5144), 185-190, doi: 10.1126/science.263.5144.185.

Dlugokencky, E. J., L. Bruhwiler, J. W. C. White, L. K. Emmons, P. C. Novelli, S. A. Montzka, K. A. Masarie, P. M. Lang, A. M. Crotwell, J. B. Miller, and L. V. Gatti, 2009: Observational constraints on recent increases in the atmospheric CH4 burden. Geophysical Research Letters, 36(18), doi: 10.1029/2009GL039780.

Drozdov, D. S., G. V. Malkova, N. G. Ukraintseva, and Y. V. Korostelev, 2012: Permafrost monitoring of southern tundra landscapes in the Russian European north and west Siberia. In: Proceedings of the Tenth International Conference on Permafrost. Vol. 2: Translations of Russian Contributions, Salekhard, Russia, The Northern Publisher, 65-70.

Dutta, K., E. A. G. Schuur, J. C. Neff, and S. A. Zimov, 2006: Potential carbon release from permafrost soils of northeastern Siberia. Global Change Biology, 12(12), 2336-2351, doi: 10.1111/j.1365-2486.2006.01259.x.

Ellis, E. C., and N. Ramankutty, 2008: Putting people in the map: Anthropogenic biomes of the world. Frontiers in Ecology and the Environment, 6(8), 439-447, doi: 10.1890/070062.

Elmendorf, S. C., G. H. R. Henry, R. D. Hollister, R. G. Bjork, N. Boulanger-Lapointe, E. J. Cooper, J. H. C. Cornelissen, T. A. Day, E. Dorrepaal, T. G. Elumeeva, M. Gill, W. A. Gould, J. Harte, D. S. Hik, A. Hofgaard, D. R. Johnson, J. F. Johnstone, I. S. Jonsdottir, J. C. Jorgenson, K. Klanderud, J. A. Klein, S. Koh, G. Kudo, M. Lara, E. Levesque, B. Magnusson, J. L. May, J. A. Mercado-Diaz, A. Michelsen, U. Molau, I. H. Myers-Smith, S. F. Oberbauer, V. G. Onipchenko, C. Rixen, N. Martin Schmidt, G. R. Shaver, M. J. Spasojevic, o. E. orhallsdottir, A. Tolvanen, T. Troxler, C. E. Tweedie, S. Villareal, C.-H. Wahren, X. Walker, P. J. Webber, J. M. Welker, and S. Wipf, 2012: Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2(6), 453-457, doi: 10.1038/nclimate1465.

Epstein, H. E., M. K. Raynolds, D. A. Walker, U. S. Bhatt, C. J. Tucker, and J. E. Pinzon, 2012: Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters, 7(1), 015506, doi: 10.1088/1748-9326/7/1/015506.

Epstein, H. E., U. S. Bhatt, M. K. Raynolds, D. A. Walker, P. A. Bieniek, C. J. Tucker, J. E. Pinzon, I. H. Myers-Smith, B. C. Forbes, M. Macias-Fauria, N. T. Boelman, and S. K. Sweet, 2015: Tundra greeness. Arctic Report Card: Update for 2015. [M. O. Jeffries, J. Richter-Menge, and J. E. Overland, (eds.)]. [URL]

Flannigan, M., B. Stocks, M. Turetsky, and M. Wotton, 2009: Impacts of climate change on fire activity and fire management in the circumboreal forest. Global Change Biology, 15(3), 549-560, doi: 10.1111/j.1365-2486.2008.01660.x.

French, N. H., L. K. Jenkins, T. V. Loboda, M. Flannigan, R. Jandt, L. L. Bourgeau-Chavez, and M. Whitley, 2015: Fire in Arctic tundra of Alaska: Past fire activity, future fire potential, and significance for land management and ecology. International Journal of Wildland Fire, 24(8), 1045-1061.

Frost, G. V., and H. E. Epstein, 2014: Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Global Change Biology, 20(4), 1264-1277, doi: 10.1111/gcb.12406.

Gao, X., C. A. Schlosser, A. Sokolov, K. W. Anthony, Q. Zhuang, and D. Kicklighter, 2013: Permafrost degradation and methane: Low risk of biogeochemical climate-warming feedback. Environmental Research Letters, 8(3), doi: 10.1088/1748-9326/8/3/035014.

Giglio, L., J. T. Randerson, and G. R. van der Werf, 2013: Analysis of daily, monthly, and annual burned area using the fourth­generation Global Fire Emissions Database (GFED4). Journal of Geophysical Research: Biogeosciences, 118(1), 317-328, doi: 10.1002/jgrg.20042.

Gogineni, P., V. E. Romanovsky, J. Cherry, C. Duguay, S. Goetz, M. T. Jorgenson, and M. Moghaddam, 2014: Opportunities to Use Remote Sensing in Understanding Permafrost and Related Ecological Characteristics: Report of a Workshop. The National Academies Press. 1-84 pp. doi: 10.17226/18711.

Gorham, E., 1991: Northern peatlands: Role in the carbon-cycle and probabable responses to climatic warming. Ecological Applications, 1(2), 182-195, doi: 10.2307/1941811.

Harden, J. W., R. K. Mark, E. T. Sundquist, and R. F. Stallard, 1992: Dynamics of soil carbon during deglaciation of the Laurentide Ice Sheet. Science, 258(5090), 1921-1924, doi: 10.1126/science.258.5090.1921.

Harden, J. W., S. E. Trumbore, B. J. Stocks, A. Hirsch, S. T. Gower, K. P. O’Neill, and E. S. Kasischke, 2000: The role of fire in the boreal carbon budget. Global Change Biology, 6, 174-184, doi: 10.1046/j.1365-2486.2000.06019.x.

Harden, J. W., C. D. Koven, C.-L. Ping, G. Hugelius, A. David McGuire, P. Camill, T. Jorgenson, P. Kuhry, G. J. Michaelson, J. A. O’Donnell, E. A. G. Schuur, C. Tarnocai, K. Johnson, and G. Grosse, 2012: Field information links permafrost carbon to physical vulnerabilities of thawing. Geophysical Research Letters, 39(15), doi: 10.1029/2012gl051958.

Hobbie, S. E., J. P. Schimel, S. E. Trumbore, and J. R. Randerson, 2000: Controls over carbon storage and turnover in high-latitude soils. Global Change Biology, 6, 196-210, doi: 10.1046/j.1365-2486.2000.06021.x.

Hoy, E. E., M. R. Turetsky, and E. S. Kasischke, 2016: More frequent burning increases vulnerability of Alaskan boreal black spruce forests. Environmental Research Letters, 11(9), 095001, doi: 10.1088/1748-9326/11/9/095001.

Hu, F. S., P. E. Higuera, J. E. Walsh, W. L. Chapman, P. A. Duffy, L. B. Brubaker, and M. L. Chipman, 2010: Tundra burning in Alaska: Linkages to climatic change and sea ice retreat. Journal of Geophysical Research: Biogeosciences, 115(G4), doi: 10.1029/2009JG001270.

Hu, F. S., P. E. Higuera, P. Duffy, M. L. Chipman, A. V. Rocha, A. M. Young, R. Kelly, and M. C. Dietze, 2015: Arctic tundra fires: Natural variability and responses to climate change. Frontiers in Ecology and the Environment, 13(7), 369-377, doi: 10.1890/150063.

Hugelius, G., J. Strauss, S. Zubrzycki, J. W. Harden, E. A. G. Schuur, C. L. Ping, L. Schirrmeister, G. Grosse, G. J. Michaelson, C. D. Koven, J. A. O’Donnell, B. Elberling, U. Mishra, P. Camill, Z. Yu, J. Palmtag, and P. Kuhry, 2014: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences, 11(23), 6573-6593, doi: 10.5194/bg-11-6573-2014.

IPCC, 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel On Climate Change. [T. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. Midgley (eds.).] Cambridge University Press, Cambridge, UK, and New York, NY, USA,1535 pp.

James, M., A. G. Lewkowicz, S. L. Smith, and C. M. Miceli, 2013: Multi-decadal degradation and persistence of permafrost in the Alaska Highway corridor, northwest Canada. Environmental Research Letters, 8(4), 045013, doi: 10.1088/1748-9326/8/4/045013.

Jia, G. J., H. E. Epstein, and D. A. Walker, 2003: Greening of Arctic Alaska, 1981–2001. Geophysical Research Letters, 30(20), doi: 10.1029/2003GL018268.

Jiang, Y., A. V. Rocha, J. A. O’Donnell, J. A. Drysdale, E. B. Rastetter, G. R. Shaver, and Q. Zhuang, 2015: Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest. Journal of Geophysical Research: Earth Surface, 120(2), 363-378, doi: 10.1002/2014JF003180.

Jobbágy, E. G., and R. B. Jackson, 2000: The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 10(2), 423-436, doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2.

Johnson, E. A., 1992: Fire and Vegetation Dynamics. Studies from the North American Boreal Forest. Cambridge University Press.

Johnson, K. D., J. Harden, A. D. McGuire, N. B. Bliss, J. G. Bockheim, M. Clark, T. Nettleton-Hollingsworth, M. T. Jorgenson, E. S. Kane, M. Mack, J. O’Donnell, C.-L. Ping, E. A. G. Schuur, M. R. Turetsky, and D. W. Valentine, 2011: Soil carbon distribution in Alaska in relation to soil-forming factors. Geoderma, 167-168, 71-84, doi: 10.1016/j.geoderma.2011.10.006.

Johnstone, J., L. Boby, E. Tissier, M. Mack, D. Verbyla, and X. Walker, 2009: Postfire seed rain of black spruce, a semiserotinous conifer, in forests of interior Alaska. Canadian Journal of Forest Research, 39(8), 1575-1588, doi: 10.1139/X09-068.

Johnstone, J. F., T. S. Rupp, M. Olson, and D. Verbyla, 2011: Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landscape Ecology, 26(4), 487-500, doi: 10.1007/s10980-011-9574-6.

Johnstone, J. F., F. S. Chapin, T. N. Hollingsworth, M. C. Mack, V. Romanovsky, and M. Turetsky, 2010: Fire, climate change, and forest resilience in interior Alaska. Canadian Journal of Forest Research, 40(7), 1302-1312, doi: 10.1139/X10-061.

Jones, B., C. Kolden, R. Jandt, J. Abatzoglou, F. Urban, and C. Arp, 2009: Fire behavior, weather, and burn severity of the 2007 Anaktuvuk River tundra fire, North Slope, Alaska. Arctic, Antarctic, and Alpine Research, 41(3), 309-316, doi: 10.1657/1938-4246-41.3.309.

Jones, B. M., G. Grosse, C. D. Arp, E. Miller, L. Liu, D. J. Hayes, and C. F. Larsen, 2015: Recent Arctic tundra fire initiates widespread thermokarst development. Scientific Reports, 5, 15865, doi: 10.1038/srep15865.

Jones, M. C., J. Harden, J. O’Donnell, K. Manies, T. Jorgenson, C. Treat, and S. Ewing, 2017: Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Global Change Biology, 23(3), 1109-1127, doi: 10.1111/gcb.13403.

Jorgenson, M. T., 2013: Landscape-Level Ecological Mapping of Northern Alaska and Field Site Photography. Arctic Landscape Conservation Cooperative, US Fish and Wildlife Service. 48 pp. [URL]

Jorgenson, M. T., and J. Brown, 2005: Classification of the Alaskan Beaufort Sea coast and estimation of carbon and sediment inputs from coastal erosion. Geo-Marine Letters, 25(2), 69-80, doi: 10.1007/s00367-004-0188-8.

Jorgenson, M. T., Y. L. Shur, and E. R. Pullman, 2006: Abrupt increase in permafrost degradation in Arctic Alaska. Geophysical Research Letters, 33(2), L02503, doi: 10.1029/2005gl024960.

Jorgenson, M. T., J. W. Harden, M. Kanevskiy, J. A. O’Donnell, K. P. Wickland, S. A. Ewing, K. L. Manies, Q. Zhuang, Y. Shur, R. Striegl, and J. Koch, 2013: Reorganization of vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous boreal landscapes. Environmental Research Letters, 8(3), 035017, doi: 10.1088/1748-9326/8/3/035017.

Ju, J., and J. G. Masek, 2016: The vegetation greenness trend in Canada and US Alaska from 1984–2012 Landsat data. Remote Sensing of Environment, 176, 1-16, doi: 10.1016/j.rse.2016.01.001.

Juncher Jørgensen, C., K. M. Lund Johansen, A. Westergaard­Nielsen, and B. Elberling, 2015: Net regional methane sink in high Arctic soils of northeast Greenland. Nature Geoscience, 8(1), 20-23, doi: 10.1038/ngeo2305.

Kasischke, E. S., and J. F. Johnstone, 2005: Variation in postfire organic layer thickness in a black spruce forest complex in interior Alaska and its effects on soil temperature and moisture. Canadian Journal of Forest Research, 35(9), 2164-2177, doi: 10.1139/x05-159.

Kasischke, E. S., and M. R. Turetsky, 2006: Recent changes in the fire regime across the North American boreal region—spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 33(9), doi: 10.1029/2006GL025677.

Kasischke, E. S., N. L. Christensen, and B. J. Stocks, 1995: Fire, global warming, and the carbon balance of boreal forests. Ecological Applications, 5(2), 437-451, doi: 10.2307/1942034.

Kelly, R., M. L. Chipman, P. E. Higuera, I. Stefanova, L. B. Brubaker, and F. S. Hu, 2013: Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proceedings of the National Academy of Sciences USA, 110(32), 13055-13060, doi: 10.1073/pnas.1305069110.

Kirschke, S., P. Bousquet, P. Ciais, M. Saunois, J. G. Canadell, E. J. Dlugokencky, P. Bergamaschi, D. Bergmann, D. R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E. L. Hodson, S. Houweling, B. Josse, P. J. Fraser, P. B. Krummel, J.-F. Lamarque, R. L. Langenfelds, C. Le Quere, V. Naik, S. O’Doherty, P. I. Palmer, I. Pison, D. Plummer, B. Poulter, R. G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D. T. Shindell, I. J. Simpson, R. Spahni, L. P. Steele, S. A. Strode, K. Sudo, S. Szopa, G. R. van der Werf, A. Voulgarakis, M. van Weele, R. F. Weiss, J. E. Williams, and G. Zeng, 2013: Three decades of global methane sources and sinks. Nature Geoscience, 6(10), 813-823, doi: 10.1038/ngeo1955.

Knoblauch, C., C. Beer, A. Sosnin, D. Wagner, and E.-M. Pfeiffer, 2013: Predicting long-term carbon mineralization and trace gas production from thawing permafrost of northeast Siberia. Global Change Biology, 19(4), 1160-1172, doi: 10.1111/gcb.12116.

Kohnert, K., A. Serafimovich, S. Metzger, J. Hartmann, and T. Sachs, 2017: Strong geologic methane emissions from discontinuous terrestrial permafrost in the Mackenzie Delta, Canada. Science Report, 7(1), 5828, doi: 10.1038/s41598-017-05783-2.

Kokelj, S. V., T. C. Lantz, J. Tunnicliffe, R. Segal, and D. Lacelle, 2017: Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology, 45(4), 371-374, doi: 10.1130/g38626.1.

Koven, C. D., W. J. Riley, and A. Stern, 2013: Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth system models. Journal of Climate, 26(6), 1877-1900, doi: 10.1175/jcli-d-12-00228.1.

Koven, C. D., B. Ringeval, P. Friedlingstein, P. Ciais, P. Cadule, D. Khvorostyanov, G. Krinner, and C. Tarnocai, 2011: Permafrost carbon-climate feedbacks accelerate global warming. Proceedings of the National Academy of Sciences USA, 108(36), 14769-14774, doi: 10.1073/pnas.1103910108.

Koven, C. D., E. A. G. Schuur, C. Schädel, T. J. Bohn, E. J. Burke, G. Chen, X. Chen, P. Ciais, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, E. E. Jafarov, G. Krinner, P. Kuhry, D. M. Lawrence, A. H. MacDougall, S. S. Marchenko, A. D. McGuire, S. M. Natali, D. J. Nicolsky, D. Olefeldt, S. Peng, V. E. Romanovsky, K. M. Schaefer, J. Strauss, C. C. Treat, and M. Turetsky, 2015: A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 373(2054), doi: 10.1098/rsta.2014.0423.

Kurz, W. A., G. Stinson, G. J. Rampley, C. C. Dymond, and E. T. Neilson, 2008: Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain. Proceedings of the National Academy of Sciences USA, 105(5), 1551-1555, doi: 10.1073/pnas.0708133105.

Lara, M. J., H. Genet, A. D. McGuire, E. S. Euskirchen, Y. Zhang, D. R. Brown, M. T. Jorgenson, V. Romanovsky, A. Breen, and W. R. Bolton, 2016: Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland. Global Change Biology, 22(2), 816-829, doi: 10.1111/gcb.13124.

Lawrence, D. M., A. G. Slater, and S. C. Swenson, 2012: Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. Journal of Climate, 25(7), 2207-2225, doi: 10.1175/jcli-d-11-00334.1.

Lawrence, D. M., A. G. Slater, V. E. Romanovsky, and D. J. Nicolsky, 2008: Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. Journal of Geophysical Research: Earth Surface, 113(F2), F02011, doi: 10.1029/2007JF000883.

Lee, H., S. C. Swenson, A. G. Slater, and D. M. Lawrence, 2014: Effects of excess ground ice on projections of permafrost in a warming climate. Environmental Research Letters, 9(12), 124006, doi: 10.1088/1748-9326/9/12/124006.

Lee, H., E. A. G. Schuur, K. S. Inglett, M. Lavoie, and J. P. Chanton, 2012: The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Global Change Biology, 18(2), 515-527, doi: 10.1111/j.1365-2486.2011.02519.x.

Liljedahl, A. K., J. Boike, R. P. Daanen, A. N. Fedorov, G. V. Frost, G. Grosse, L. D. Hinzman, Y. Iijma, J. C. Jorgenson, N. Matveyeva, M. Necsoiu, M. K. Raynolds, V. E. Romanovsky, J. Schulla, K. D. Tape, D. A. Walker, C. J. Wilson, H. Yabuki, and D. Zona, 2016: Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nature Geoscience, 9(4), 312-318, doi: 10.1038/ngeo2674.

Liu, L., K. Schaefer, T. Zhang, and J. Wahr, 2012: Estimating 1992–2000 average active layer thickness on the Alaskan north slope from remotely sensed surface subsidence. Journal of Geophysical Research: Earth Surface, 117(F1), doi: 10.1029/2011JF002041.

Loisel, J., Z. Yu, D. W. Beilman, P. Camill, J. Alm, M. J. Amesbury, D. Anderson, S. Andersson, C. Bochicchio, K. Barber, L. R. Belyea, J. Bunbury, F. M. Chambers, D. J. Charman, F. De Vleeschouwer, B. Fiałkiewicz-Kozieł, S. A. Finkelstein, M. Gałka, M. Garneau, D. Hammarlund, W. Hinchcliffe, J. Holmquist, P. Hughes, M. C. Jones, E. S. Klein, U. Kokfelt, A. Korhola, P. Kuhry, A. Lamarre, M. Lamentowicz, D. Large, M. Lavoie, G. MacDonald, G. Magnan, M. Mäkilä, G. Mallon, P. Mathijssen, D. Mauquoy, J. McCarroll, T. R. Moore, J. Nichols, B. O’Reilly, P. Oksanen, M. Packalen, D. Peteet, P. J. H. Richard, S. Robinson, T. Ronkainen, M. Rundgren, A. B. K. Sannel, C. Tarnocai, T. Thom, E.-S. Tuittila, M. Turetsky, M. Väliranta, M. van der Linden, B. van Geel, S. van Bellen, D. Vitt, Y. Zhao, and W. Zhou, 2014: A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. The Holocene, 24(9), 1028-1042, doi: 10.1177/0959683614538073.

LTER, 2007: The Decadal Plan for LTER–Integrative Science for Society and the Environment: A Plan for Science, Education, and Cyberinfrastructure in the U.S. Long-Term Ecological Research Network. Publication Series No. 24, U.S. Long Term Ecological Research Network Office. [URL]

Luo, G. B., G. L. Zhang, and Z. T. Gong, 2000: A real evaluation of organic carbon pools in cryic soils of China. In: Global Climate Change and Cold Regions Ecosystems. [R. Lal, J. M. Kimble, and B. A. Stewart (eds.)]. Lewis Publisher, pp. 211-222.

MacDougall, A. H., C. A. Avis, and A. J. Weaver, 2012: Significant contribution to climate warming from the permafrost carbon feedback. Nature Geoscience, 5(10), 719-721, doi: 10.1038/ngeo1573.

MacDougall, A. H., and R. Knutti, 2016: Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences, 13(7), 2123-2136, doi: 10.5194/bg-13-2123-2016.

Mack, M. C., M. S. Bret-Harte, T. N. Hollingsworth, R. R. Jandt, E. A. G. Schuur, G. R. Shaver, and D. L. Verbyla, 2011: Carbon loss from an unprecedented Arctic tundra wildfire. Nature, 475(7357), 489-492, doi: 10.1038/nature10283.

Malkova, G. D., M. O. Leibman, D. S. Drozdov, V. I. Khomutova, A. A. Guuubarkov, and A. B. Sherstyukov, 2014: Impact of climate change on natural terrestrial systems. In: The Second Assessment Report of Roshydromet on Climate Change and Their Consequences on the Territory of the Russian Federation. [M. Roshydromet (ed.)]. pp 410-458. [URL]

Mann, D. H., T. Scott Rupp, M. A. Olson, and P. A. Duffy, 2012: Is Alaska’s boreal forest now crossing a major ecological threshold? Arctic, Antarctic, and Alpine Research, 44(3), 319-331, doi: 10.1657/1938-4246-44.3.319.

Margolis, H. A., R. F. Nelson, P. M. Montesano, A. Beaudoin, G. Sun, H.-E. Andersen, and M. A. Wulder, 2015: Combining satellite LIDAR, airborne LIDAR, and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of North America. Canadian Journal of Forest Research, 45(7), 838-855, doi: 10.1139/cjfr-2015-0006.

Mastepanov, M., C. Sigsgaard, E. J. Dlugokencky, S. Houweling, L. Strom, M. P. Tamstorf, and T. R. Christensen, 2008: Large tundra methane burst during onset of freezing. Nature, 456(7222), 628-630, doi: 10.1038/nature07464.

McGuire, A. D., J. M. Melillo, D. W. Kicklighter, Y. Pan, X. Xiao, J. Helfrich, B. Moore, C. J. Vorosmarty, and A. L. Schloss, 1997: Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration. Global Biogeochemical Cycles, 11(2), 173-189, doi: 10.1029/97GB00059.

McGuire, A. D., L. G. Anderson, T. R. Christensen, S. Dallimore, L. D. Guo, D. J. Hayes, M. Heimann, T. D. Lorenson, R. W. Macdonald, and N. Roulet, 2009: Sensitivity of the carbon cycle in the Arctic to climate change. Ecological Monographs, 79(4), 523-555, doi: 10.1890/08-2025.1.

McGuire, A. D., T. R. Christensen, D. Hayes, A. Heroult, E. Euskirchen, J. S. Kimball, C. Koven, P. Lafleur, P. A. Miller, W. Oechel, P. Peylin, M. Williams, and Y. Yi, 2012: An assessment of the carbon balance of Arctic tundra: Comparisons among observations, process models, and atmospheric inversions. Biogeosciences, 9(8), 3185-3204, doi: 10.5194/bg-9-3185-2012.

McGuire, A. D., C. Koven, D. M. Lawrence, J. S. Clein, J. Xia, C. Beer, E. Burke, G. Chen, X. Chen, C. Delire, E. Jafarov, A. H. MacDougall, S. Marchenko, D. Nicolsky, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T. J. Bohn, P. Ciais, B. Decharme, A. Ekici, I. Gouttevin, T. Hajima, D. J. Hayes, D. Ji, G. Krinner, D. P. Lettenmaier, Y. Luo, P. A. Miller, J. C. Moore, V. Romanovsky, C. Schädel, K. Schaefer, E. A. G. Schuur, B. Smith, T. Sueyoshi, and Q. Zhuang, 2016: Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles, 30(7), 1015-1037, doi: 10.1002/2016gb005405.

McGuire, A. D., D. M. Lawrence, C. Koven, J. S. Clein, E. Burke, G. Chen, E. Jafarov, A. H. MacDougall, S. Marchenko, D. Nicolsky, S. Peng, A. Rinke, P. Ciais, I. Gouttevin, D. J. Hayes, D. Ji, G. Krinner, J. C. Moore, V. Romanovsky, C. Schadel, K. Schaefer, E. A. G. Schuur, and Q. Zhuang, 2018: Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences USA, 115(15), 3882-3887, doi: 10.1073/pnas.1719903115.

Melillo, J. M., T.C. Richmond, and E. G.W. Yohe (eds.), 2014: Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841, [URL]

Melnikov, V. P., D. S. Drozdov, and V. V. Pendin, 2015: Arctic permafrost: Dynamics, risks, problems and solutions. In: Moscow, XXII International Science-Practical Conference: New Ideas In Earth Science, 123-138.

Melvin, A. M., M. C. Mack, J. F. Johnstone, A. David McGuire, H. Genet, and E. A. G. Schuur, 2015: Differences in ecosystem carbon distribution and nutrient cycling linked to forest tree species composition in a mid-successional boreal forest. Ecosystems, 18(8), 1472-1488, doi: 10.1007/s10021-015-9912-7.

Miller, S. M., C. E. Miller, R. Commane, R. Y. W. Chang, S. J. Dinardo, J. M. Henderson, A. Karion, J. Lindaas, J. R. Melton, J. B. Miller, C. Sweeney, S. C. Wofsy, and A. M. Michalak, 2016: A multiyear estimate of methane fluxes in Alaska from CARVE atmospheric observations. Global Biogeochemical Cycles, 30(10), 1441-1453, doi: 10.1002/2016GB005419.

Mishra, U., and W. J. Riley, 2012: Alaskan soil carbon stocks: Spatial variability and dependence on environmental factors. Biogeosciences, 9(9), 3637-3645, doi: 10.5194/bg-9-3637-2012.

Mu, C., T. Zhang, Q. Wu, X. Peng, B. Cao, X. Zhang, B. Cao, and G. Cheng, 2015: Editorial: Organic carbon pools in permafrost regions on the Qinghai–Xizang (Tibetan) Plateau. Cryosphere, 9(2), 479-486, doi: 10.5194/tc-9-479-2015.

Mu, M., J. T. Randerson, G. R. van der Werf, L. Giglio, P. Kasibhatla, D. Morton, G. J. Collatz, R. S. DeFries, E. J. Hyer, E. M. Prins, D. W. T. Griffith, D. Wunch, G. C. Toon, V. Sherlock, and P. O. Wennberg, 2011: Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. Journal of Geophysical Research: Atmospheres, 116(D24), doi: 10.1029/2011JD016245.

Neigh, C. S. R., R. F. Nelson, K. J. Ranson, H. A. Margolis, P. M. Montesano, G. Sun, V. Kharuk, E. Næsset, M. A. Wulder, and H.-E. Andersen, 2013: Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LIDAR. Remote Sensing of Environment, 137, 274-287, doi: 10.1016/j.rse.2013.06.019.

Noetzli, J., H. H. Christiansen, M. Guglielmin, V. E. Romanovsky, N. I. Shiklomanov, S. L. Smith, and L. Zhao, 2016: Global climates: Crypsphere, permafrost thermal state. In: State of the Climate in 2015. Bulletin of the American Meteorological Society, pp. S20–S22.

NOAA, 2012: Arctic Report Card: Update for 2012. [M. O. Jeffries, J. Richter-Menge, and J. E. Overland (eds.)].

Olefeldt, D., M. R. Turetsky, P. M. Crill, and A. D. McGuire, 2013: Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Global Change Biology, 19(2), 589-603, doi: 10.1111/gcb.12071.

Olefeldt, D., S. Goswami, G. Grosse, D. Hayes, G. Hugelius, P. Kuhry, A. D. McGuire, V. E. Romanovsky, A. B. K. Sannel, E. A. G. Schuur, and M. R. Turetsky, 2016: Circumpolar distribution and carbon storage of thermokarst landscapes. Nature Communications, 7, 13043, doi: 10.1038/ncomms13043.

Olson, D. M., E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A. D’Amico, I. Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W. W. Wettengel, P. Hedao, and K. R. Kassem, 2001: Terrestrial ecoregions of the world: A new map of life on Earth. BioScience, 51(11), 933, doi: 10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2.

Overland, J. E., M. Wang, J. E. Walsh, and J. C. Stroeve, 2014: Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future, 2(2), 68-74, doi: 10.1002/2013EF000162.

Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainen, S. Sitch, and D. Hayes, 2011: A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993, doi: 10.1126/science.1201609.

Parazoo, N. C., R. Commane, S. C. Wofsy, C. D. Koven, C. Sweeney, D. M. Lawrence, J. Lindaas, R. Y.-W. Chang, and C. E. Miller, 2016: Detecting regional patterns of changing CO2 flux in Alaska. Proceedings of the National Academy of Sciences USA, 113(28), 7733-7738, doi: 10.1073/pnas.1601085113.

Pastick, N. J., M. T. Jorgenson, B. K. Wylie, B. J. Minsley, L. Ji, M. A. Walvoord, B. D. Smith, J. D. Abraham, and J. R. Rose, 2013: Extending airborne electromagnetic surveys for regional active layer and permafrost mapping with remote sensing and ancillary data, Yukon Flats Ecoregion, central Alaska. Permafrost and Periglacial Processes, 24(3), 184-199, doi: 10.1002/ppp.1775.

Phoenix, G. K., and J. W. Bjerke, 2016: Arctic browning: Extreme events and trends reversing Arctic greening. Global Change Biology, 22(9), 2960-2962, doi: 10.1111/gcb.13261.

Ping, C. L., G. J. Michaelson, J. M. Kimble, V. E. Romanovsky, Y. L. Shur, D. K. Swanson, and D. A. Walker, 2008: Cryogenesis and soil formation along a bioclimate gradient in Arctic North America. Journal of Geophysical Research: Biogeosciences, 113(G3), doi: 10.1029/2008jg000744.

Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nature Geoscience, 7(3), 181-184, doi: 10.1038/ngeo2071.

Post, W. M., W. R. Emanuel, P. J. Zinke, and A. G. Stangenberger, 1982: Soil carbon pools and world life zones. Nature, 298, 156-159, doi: 10.1038/298156a0.

Potter, C. S., and S. A. Klooster, 1997: Global model estimates of carbon and nitrogen storage in litter and soil pools: Response to changes in vegetation quality and biomass allocation. Tellus B: Chemical and Physical Meteorology, 49(1), 1-17, doi: 10.3402/tellusb.v49i1.15947.

Qian, H., R. Joseph, and N. Zeng, 2010: Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the coupled carbon cycle climate model intercomparison project model projections. Global Change Biology, 16(2), 641-656, doi: 10.1111/j.1365-2486.2009.01989.x.

Rachold, V., M. N. Grigoriev, F. E. Are, S. Solomon, E. Reimnitz, H. Kassens, and M. Antonow, 2000: Coastal erosion vs riverine sediment discharge in the Arctic Shelf seas. International Journal of Earth Sciences, 89(3), 450-460, doi: 10.1007/s005310000113.

Rachold, V., H. Eicken, V. V. Gordeev, M. N. Grigoriev, H.W. Hubberten, A. P. Lisitzin, V. P. Shevchenko, and L. Schirrmeister, 2004: Modern terrigenous organic carbon input to the Arctic Ocean. In: The Organic Carbon Cycle in the Arctic Ocean. [R. Stein and R. W. MacDonald (eds.)]. Springer Berlin Heidelberg, 33-55 pp.

Rachold, V., D. Y. Bolshiyanov, M. N. Grigoriev, H.-W. Hubberten, R. Junker, V. V. Kunitsky, F. Merker, P. Overduin, and W. Schneider, 2007: Nearshore Arctic subsea permafrost in transition. Eos, Transactions American Geophysical Union, 88(13), 149-150, doi: 10.1029/2007EO130001.

Racine, C. H., R. Jandt, C. P. Meyer, and J. Dennis, 2004: Tundra fire and vegetation change along a hillslope on the Seward Peninsula, Alaska, USA. Arctic, Antarctic, and Alpine Research, 36(1), 1-10, doi: 10.1657/1523-0430(2004)036[0001:tfavca]2.0.co;2.

Randerson, J. T., Y. Chen, G. R. van der Werf, B. M. Rogers, and D. C. Morton, 2012: Global burned area and biomass burning emissions from small fires. Journal of Geophysical Research: Biogeosciences, 117(G4), doi: 10.1029/2012JG002128.

Randerson, J. T., H. Liu, M. G. Flanner, S. D. Chambers, Y. Jin, P. G. Hess, G. Pfister, M. C. Mack, K. K. Treseder, L. R. Welp, F. S. Chapin, J. W. Harden, M. L. Goulden, E. Lyons, J. C. Neff, E. A. G. Schuur, and C. S. Zender, 2006: The impact of boreal forest fire on climate warming. Science, 314(5802), 1130-1132, doi: 10.1126/science.1132075.

Raynolds, M. K., D. A. Walker, H. E. Epstein, J. E. Pinzon, and C. J. Tucker, 2012: A new estimate of tundra-biome phytomass from trans-Arctic field data and AVHRR NDVI. Remote Sensing Letters, 3(5), 403-411, doi: 10.1080/01431161.2011.609188.

Raz-Yaseef, N., M. S. Torn, Y. Wu, D. P. Billesbach, A. K. Liljedahl, T. J. Kneafsey, V. E. Romanovsky, D. R. Cook, and S. D. Wullschleger, 2016: Large CO2 and CH4 emissions from polygonal tundra during spring thaw in northern Alaska. Geophysical Research Letters, 44(1), 504-513, doi: 10.1002/2016GL071220.

Riley, W. J., Z. M. Subin, D. M. Lawrence, S. C. Swenson, M. S. Torn, L. Meng, N. M. Mahowald, and P. Hess, 2011: Barriers to predicting changes in global terrestrial methane fluxes: Analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences, 8(7), 1925-1953, doi: 10.5194/bg-8-1925-2011.

Rocha, A. V., M. M. Loranty, P. E. Higuera, M. C. Mack, F. S. Hu, B. M. Jones, A. L. Breen, E. B. Rastetter, S. J. Goetz, and G. R. Shaver, 2012: The footprint of Alaskan tundra fires during the past half-century: Implications for surface properties and radiative forcing. Environmental Research Letters, 7(4), 044039, doi: 10.1088/1748-9326/7/4/044039.

Rogers, J. C., and J. L. Morack, 1980: Geophysical evidence of shallow nearshore permafrost, Prudhoe Bay, Alaska. Journal of Geophysical Research: Solid Earth, 85(B9), 4845-4853, doi: 10.1029/JB085iB09p04845.

Romanovsky, V. E., S. L. Smith, and H. H. Christiansen, 2010: Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: A synthesis. Permafrost and Periglacial Processes, 21(2), 106-116, doi: 10.1002/ppp.689.

Romanovsky, V. E., S. L. Smith, K. Isaksen, N. I. Shiklomanov, D. A. Streletskiy, A. L. Kholodov, H. H. Christiansen, D. S. Drozdov, G. V. Malkova, and S. S. Marchenko, 2016: The Arctic: Terrestrial permafrost. In: State of the Climate in 2015, Bulletin of the American Meteorological Society, S149-S152 pp.

Rupp, T. S., P. Duffy, M. Leonawicz, M. Lindgren, A. Breen, T. Kurkowski, A. Floyd, A. Bennett, and L. Krutikov, 2016: Climate scenarios, land cover, and wildland fire. In: Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of Alaska, pp. 17-52. [Z. Zhu and A. D. McGuire (eds.)].

Ruppel, C. D., and J. D. Kessler, 2017: The interaction of climate change and methane hydrates. Reviews of Geophysics, doi: 10.1002/2016RG000534.

Salmon, V. G., P. Soucy, M. Mauritz, G. Celis, S. M. Natali, M. C. Mack, and E. A. G. Schuur, 2016: Nitrogen availability increases in a tundra ecosystem during five years of experimental permafrost thaw. Global Change Biology, 22(5), 1927–1941, doi: 10.1111/gcb.13204.

Saugier, B., J. Roy, and H. A. Mooney, 2001: Estimations of global terrestrial productivity: Converging toward a single number? Terrestrial global productivity, Academic Press, pp. 543-557. [URL]

Schädel, C., E. A. G. Schuur, R. Bracho, B. Elberling, C. Knoblauch, H. Lee, Y. Luo, G. R. Shaver, and M. R. Turetsky, 2014: Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Global Change Biology, 20(2), 641-652, doi: 10.1111/gcb.12417.

Schädel, C., M. K. F. Bader, E. A. G. Schuur, C. Biasi, R. Bracho, P. Capek, S. De Baets, K. Diakova, J. Ernakovich, C. Estop-Aragones, D. E. Graham, I. P. Hartley, C. M. Iversen, E. Kane, C. Knoblauch, M. Lupascu, P. J. Martikainen, S. M. Natali, R. J. Norby, J. A. O/’Donnell, T. R. Chowdhury, H. Santruckova, G. Shaver, V. L. Sloan, C. C. Treat, M. R. Turetsky, M. P. Waldrop, and K. P. Wickland, 2016: Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nature Climate Change, 6(10), 950-953, doi: 10.1038/nclimate3054.

Schaefer, K., T. Zhang, L. Bruhwiler, and A. P. Barrett, 2011: Amount and timing of permafrost carbon release in response to climate warming. Tellus B: Chemical and Physical Meteorology, 63(2), 165-180, doi: 10.1111/j.1600-0889.2011.00527.x.

Schaefer, K., H. Lantuit, V. E. Romanovsky, E. A. G. Schuur, and R. Witt, 2014: The impact of the permafrost carbon feedback on global climate. Environmental Research Letters, 9(8), 085003, doi: 10.1088/1748-9326/9/8/085003.

Schaphoff, S., U. Heyder, S. Ostberg, D. Gerten, J. Heinke, and W. Lucht, 2013: Contribution of permafrost soils to the global carbon budget. Environmental Research Letters, 8(1), 014026, doi: 10.1088/1748-9326/8/1/014026.

Schirrmeister, L., C. Siegert, V. V. Kunitzky, P. M. Grootes, and H. Erlenkeuser, 2002: Late quaternary ice-rich permafrost sequences as a paleoenvironmental archive for the Laptev Sea region in northern Siberia. International Journal of Earth Sciences, 91(1), 154-167, doi: 10.1007/s005310100205.

Schirrmeister, L., G. Grosse, S. Wetterich, P. P. Overduin, J. Strauss, E. A. G. Schuur, and H.-W. Hubberten, 2011: Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. Journal of Geophysical Research: Biogeosciences, 116(G2), G00M02, doi: 10.1029/2011jg001647.

Schneider von Deimling, T., M. Meinshausen, A. Levermann, V. Huber, K. Frieler, D. M. Lawrence, and V. Brovkin, 2012: Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences, 9(2), 649-665, doi: 10.5194/bg-9-649-2012.

Schneider von Deimling, T., G. Grosse, J. Strauss, L. Schirrmeister, A. Morgenstern, S. Schaphoff, M. Meinshausen, and J. Boike, 2015: Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences, 12(11), 3469-3488, doi: 10.5194/bg-12-3469-2015.

Schuur, E., A. D. McGuire, J. Johnstone, M. Mack, S. Rupp, E. Euskirchen, A. Melvin, H. Genet, A. Breen, X. Walker, M. Jean, and M. Frey, 2016: Identifying Indicators of State Change and Forecasting Future Vulnerability in Alaskan Boreal Ecosystems. Department of Defense Strategic Environmental Research and Development Program. SERDP Project RC-2109, 144 pp.

Schuur, E. A. G., A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, D. M. Lawrence, S. M. Natali, D. Olefeldt, V. E. Romanovsky, K. Schaefer, M. R. Turetsky, C. C. Treat, and J. E. Vonk, 2015: Climate change and the permafrost carbon feedback. Nature, 520(7546), 171-179, doi: 10.1038/nature14338.

Schuur, E. A. G., B. W. Abbott, W. B. Bowden, V. Brovkin, P. Camill, J. G. Canadell, J. P. Chanton, F. S. Chapin, III, T. R. Christensen, P. Ciais, B. T. Crosby, C. I. Czimczik, G. Grosse, J. Harden, D. J. Hayes, G. Hugelius, J. D. Jastrow, J. B. Jones, T. Kleinen, C. D. Koven, G. Krinner, P. Kuhry, D. M. Lawrence, A. D. McGuire, S. M. Natali, J. A. O’Donnell, C. L. Ping, W. J. Riley, A. Rinke, V. E. Romanovsky, A. B. K. Sannel, C. Schädel, K. Schaefer, J. Sky, Z. M. Subin, C. Tarnocai, M. R. Turetsky, M. P. Waldrop, K. M. Walter Anthony, K. P. Wickland, C. J. Wilson, and S. A. Zimov, 2013: Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 119(2), 359-374, doi: 10.1007/s10584-013-0730-7.

Schuur, E. A. G., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp, 2009: The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature, 459(7246), 556-559, doi: 10.1038/nature08031.

Schuur, E. A. G., J. Bockheim, J. G. Canadell, E. Euskirchen, C. B. Field, S. V. Goryachkin, S. Hagemann, P. Kuhry, P. M. Lafleur, H. Lee, G. Mazhitova, F. E. Nelson, A. Rinke, V. E. Romanovsky, N. Shiklomanov, C. Tarnocai, S. Venevsky, J. G. Vogel, and S. A. Zimov, 2008: Vulnerability of permafrost carbon to climate change: Implications for the global carbon cycle. BioScience, 58(8), 701-714, doi: 10.1641/b580807.

Shakhova, N., I. Semiletov, I. Leifer, A. Salyuk, P. Rekant, and D. Kosmach, 2010: Geochemical and geophysical evidence of methane release over the east Siberian Arctic Shelf. Journal of Geophysical Research: Oceans, 115, C08007, doi: 10.1029/2009jc005602.

Shakhova, N., I. Semiletov, I. Leifer, V. Sergienko, A. Salyuk, D. Kosmach, D. Chernykh, C. Stubbs, D. Nicolsky, V. Tumskoy, and O. Gustafsson, 2014: Ebullition and storm-induced methane release from the east Siberian Arctic Shelf. Nature Geoscience, 7(1), 64-70, doi: 10.1038/ngeo2007.

Shaver, G. R., J. Canadell, F. S. Chapin, J. Gurevitch, J. Harte, G. Henry, P. Ineson, S. Jonasson, J. Melillo, L. Pitelka, and L. Rustad, 2000: Global warming and terrestrial ecosystems: A conceptual framework for analysis. BioScience, 50(10), 871-882, doi: 10.1641/0006-3568(2000)050[0871:GWATEA]2.0.CO;2.

Shiklomanov, N. I., D. A. Streletskiy, and F. E. Nelson, 2012: Northern Hemisphere component of the global Circumpolar Active Layer Monitoring (CALM) program. 10th International Conference on Permafrost, 377-382.

Shiklomanov, N. I., D. A. Streletskiy, J. D. Little, and F. E. Nelson, 2013: Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophysical Research Letters, 40(24), 6356-6361, doi: 10.1002/2013GL058295.

Shur, Y. L., and M. T. Jorgenson, 2007: Patterns of permafrost formation and degradation in relation to climate and ecosystems. Permafrost and Periglacial Processes, 18(1), 7-19, doi: 10.1002/ppp.582.

Sistla, S. A., J. C. Moore, R. T. Simpson, L. Gough, G. R. Shaver, and J. P. Schimel, 2013: Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature, 497(7451), 615-618, doi: 10.1038/nature12129.

Slater, A. G., and D. M. Lawrence, 2013: Diagnosing present and future permafrost from climate models. Journal of Climate, 26(15), 5608-5623, doi: 10.1175/jcli-d-12-00341.1.

Smith, L. C., G. M. MacDonald, A. A. Velichko, D. W. Beilman, O. K. Borisova, K. E. Frey, K. V. Kremenetski, and Y. Sheng, 2004: Siberian peatlands a net carbon sink and global methane source since the early Holocene. Science, 303(5656), 353-356, doi: 10.1126/science.1090553.

Smith, S. L., S. A. Wolfe, D. W. Riseborough, and F. M. Nixon, 2009: Active-layer characteristics and summer climatic indices, Mackenzie Valley, Northwest Territories, Canada. Permafrost and Periglacial Processes, 20(2), 201-220, doi: 10.1002/ppp.651.

Smith, S. L., V. E. Romanovsky, A. G. Lewkowicz, C. R. Burn, M. Allard, G. D. Clow, K. Yoshikawa, and J. Throop, 2010: Thermal state of permafrost in North America: A contribution to the international polar year. Permafrost and Periglacial Processes, 21(2), 117-135, doi: 10.1002/ppp.690.

Stackpoole, S., D. Butman, D. Clow, K. Verdin, B. V. Gaglioti, and R. Striegl, 2016: Chapter 8. Carbon burial, transport, and emission from inland aquatic ecosystems in Alaska. Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of Alaska. Z. Zhu and A. D. McGuire, Eds., 196 pp. [URL]

Strauss, J., L. Schirrmeister, G. Grosse, S. Wetterich, M. Ulrich, U. Herzschuh, and H.-W. Hubberten, 2013: The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophysical Research Letters, 40, 6165-6170, doi: 10.1002/2013gl058088.

Strauss, J., L. Schirrmeister, G. Grosse, D. Fortier, G. Hugelius, C. Knoblauch, V. Romanovsky, C. Schädel, T. Schneider von Deimling, E. A. G. Schuur, D. Shmelev, M. Ulrich, and A. Veremeeva, 2017: Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth-Science Reviews, 172, 75-86, doi: 10.1016/j.earscirev.2017.07.007.

Sweeney, C., E. Dlugokencky, C. E. Miller, S. Wofsy, A. Karion, S. Dinardo, R. Y. W. Chang, J. B. Miller, L. Bruhwiler, A. M. Crotwell, T. Newberger, K. McKain, R. S. Stone, S. E. Wolter, P. E. Lang, and P. Tans, 2016: No significant increase in long-term CH4 emissions on North Slope of Alaska despite significant increase in air temperature. Geophysical Research Letters, 43(12), 6604-6611, doi: 10.1002/2016GL069292.

Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov, 2009: Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochemical Cycles, 23, Gb2023, doi: 10.1029/2008gb003327.

Treat, C. C., M. C. Jones, P. Camill, A. Gallego-Sala, M. Garneau, J. W. Harden, G. Hugelius, E. S. Klein, U. Kokfelt, P. Kuhry, J. Loisel, P. J. H. Mathijssen, J. A. O’Donnell, P. O. Oksanen, T. M. Ronkainen, A. B. K. Sannel, J. Talbot, C. Tarnocai, and M. Väliranta, 2016: Effects of permafrost aggradation on peat properties as determined from a pan-Arctic synthesis of plant macrofossils. Journal of Geophysical Research: Biogeosciences, 121(1), 78-94, doi: 10.1002/2015jg003061.

Turetsky, M. R., E. S. Kane, J. W. Harden, R. D. Ottmar, K. L. Manies, E. Hoy, and E. S. Kasischke, 2011a: Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nature Geoscience, 4(1), 27-31, doi: 10.1038/ngeo1027.

Turetsky, M. R., W. F. Donahue, and B. W. Benscoter, 2011b: Experimental drying intensifies burning and carbon losses in a northern peatland. Nature Communications, 2, 514, doi: 10.1038/ncomms1523.

van der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen, 2010: Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707-11735, doi: 10.5194/acp-10-11707-2010.

van Leeuwen, T. T., G. R. van der Werf, A. A. Hoffmann, R. G. Detmers, G. Rücker, N. H. F. French, S. Archibald, J. A. Carvalho Jr, G. D. Cook, W. J. de Groot, C. Hély, E. S. Kasischke, S. Kloster, J. L. McCarty, M. L. Pettinari, P. Savadogo, E. C. Alvarado, L. Boschetti, S. Manuri, C. P. Meyer, F. Siegert, L. A. Trollope, and W. S. W. Trollope, 2014: Biomass burning fuel consumption rates: A field measurement database. Biogeosciences, 11(24), 7305-7329, doi: 10.5194/bg-11-7305-2014.

Walker, D. A., M. K. Raynolds, F. J. A. Daniëls, E. Einarsson, A. Elvebakk, W. A. Gould, A. E. Katenin, S. S. Kholod, C. J. Markon, E. S. Melnikov, N. G. Moskalenko, S. S. Talbot, and B. A. Yurtsev, 2009: The Circumpolar Arctic vegetation map. Journal of Vegetation Science, 16(3), 267-282, doi: 10.1111/j.1654-1103.2005.tb02365.x.

Walter Anthony, K., R. Daanen, P. Anthony, T. Schneider von Deimling, C.-L. Ping, J. P. Chanton, and G. Grosse, 2016: Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s. Nature Geoscience, 9, 679-682, doi: 10.1038/ngeo2795.

Walter Anthony, K. M., P. Anthony, G. Grosse, and J. Chanton, 2012: Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nature Geoscience, 5(6), 419-426, doi: 10.1038/ngeo1480.

Walter Anthony, K. M., S. A. Zimov, G. Grosse, M. C. Jones, P. M. Anthony, F. S. C. Iii, J. C. Finlay, M. C. Mack, S. Davydov, P. Frenzel, and S. Frolking, 2014: A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature, 511(7510), 452-456, doi: 10.1038/nature13560.

Walter, K. M., M. E. Edwards, G. Grosse, S. A. Zimov, and F. S. Chapin, 2007: Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science, 318(5850), 633-636, doi: 10.1126/science.1142924.

Wang, G., Y. Li, Y. Wang, and Q. Wu, 2008: Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai–Tibet Plateau, China. Geoderma, 143(1–2), 143-152, doi: 10.1016/j.geoderma.2007.10.023.

Wik, M., R. K. Varner, K. W. Anthony, S. MacIntyre, and D. Bastviken, 2016: Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geoscience, 9, 99-105, doi: 10.1038/ngeo2578.

World Wildlife Fund, 2012: Terrestrial ecoregions of the world. [URL]

Xu, X., W. J. Riley, C. D. Koven, D. P. Billesbach, R. Y. W. Chang, R. Commane, E. S. Euskirchen, S. Hartery, Y. Harazono, H. Iwata, K. C. McDonald, C. E. Miller, W. C. Oechel, B. Poulter, N. Raz­Yaseef, C. Sweeney, M. Torn, S. C. Wofsy, Z. Zhang, and D. Zona, 2016: A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands. Biogeosciences, 13(17), 5043-5056, doi: 10.5194/bg-13-5043-2016.

Young, A. M., P. E. Higuera, P. A. Duffy, and F. S. Hu, 2016: Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography.

Yue, C., P. Ciais, D. Zhu, T. Wang, S. S. Peng, and S. L. Piao, 2016: How have past fire disturbances contributed to the current carbon balance of boreal ecosystems? Biogeosciences, 13(3), 675-690, doi: 10.5194/bg-13-675-2016.

Zhang, T., J. A. Heginbottom, R. G. Barry, and J. Brown, 2000: Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geography, 24(2), 126-131, doi: 10.1080/10889370009377692.

Zhuang, Q., J. M. Melillo, M. C. Sarofim, D. W. Kicklighter, A. D. McGuire, B. S. Felzer, A. Sokolov, R. G. Prinn, P. A. Steudler, and S. Hu, 2006: CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophysical Research Letters, 33(17), doi: 10.1029/2006gl026972.

Zimov, S. A., E. A. G. Schuur, and F. S. Chapin, 2006: Permafrost and the global carbon budget. Science, 312(5780), 1612-1613, doi: 10.1126/science.1128908.

Zona, D., B. Gioli, R. Commane, J. Lindaas, S. C. Wofsy, C. E. Miller, S. J. Dinardo, S. Dengel, C. Sweeney, A. Karion, R. Y.-W. Chang, J. M. Henderson, P. C. Murphy, J. P. Goodrich, V. Moreaux, A. Liljedahl, J. D. Watts, J. S. Kimball, D. A. Lipson, and W. C. Oechel, 2016: Cold season emissions dominate the Arctic tundra methane budget. Proceedings of the National Academy of Sciences USA, 113(1), 40-45, doi: 10.1073/pnas.1516017113.


  1. Carbon dioxide equivalent (CO2e): Amount of CO2 that would produce the same effect on the radiative balance of Earth’s climate system as another greenhouse gas, such as methane (CH4) or nitrous oxide (N2O), on a 100-year timescale. For comparison to units of carbon, each kg CO2e is equivalent to 0.273 kg C (0.273 = 1/3.67). See Box P.2, p. 12, in the Preface for more details.


See Full Chapter & References